A359388 a(n) is the number of compositions of n into prime parts, with the 1st part equal to 2, the 2nd part less than or equal to 3, ..., and the k-th part less than or equal to prime(k), and so on.
1, 0, 1, 0, 1, 1, 1, 2, 2, 4, 5, 7, 11, 15, 24, 33, 50, 73, 105, 159, 229, 342, 501, 738, 1094, 1604, 2378, 3499, 5166, 7627, 11243, 16610, 24494, 36165, 53376, 78775, 116301, 171642, 253398, 374034, 552139, 815079, 1203166, 1776174, 2621938, 3870572, 5713798, 8434744
Offset: 0
Keywords
Examples
The 7 such compositions of n = 11 are: [ 1] (2, 2, 2, 2, 3); [ 2] (2, 2, 2, 3, 2); [ 3] (2, 2, 3, 2, 2); [ 4] (2, 3, 2, 2, 2); [ 5] (2, 2, 2, 5); [ 6] (2, 2, 5, 2); [ 7] (2, 3, 3, 3).
Links
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, add( b(n-ithprime(j), i+1), j=1..min(i, numtheory[pi](n)))) end: a:= n-> b(n, 1): seq(a(n), n=0..50); # Alois P. Heinz, Dec 29 2022
-
Mathematica
a[n_]:=Coefficient[Expand[Sum[Product[Sum[x^Prime[i], {i, k}], {k,m}], {m, 0,Floor[n/2]}]],x,n]; Array[a,48,0]
Formula
G.f.: Sum_{m>=0} Product_{k=1..m} Sum_{i=1..k} x^prime(i).
a(n) ~ c*A078974^n, where c = 0.094587447... .