A359391 a(n) is the smallest number which can be represented as the sum of n distinct positive Fibonacci numbers (1 is allowed twice as a part) in exactly n ways, or -1 if no such number exists.
1, 2, 3, 16, 27, 71, 116, 278, 451, 818, 1305, 2169, 3925, 8119, 13117, 23252, 37858, 62999, 101939, 178088, 298357, 484576, 813710, 1613509, 2610739, 4224275, 6845969, 11280196, 19772533, 32524576, 53157802, 85936132
Offset: 0
Examples
For n = 3: 16 = Fibonacci(1) + Fibonacci(3) + Fibonacci(7) = Fibonacci(2) + Fibonacci(3) + Fibonacci(7) = Fibonacci(4) + Fibonacci(5) + Fibonacci(6) = 1 + 2 + 13 = 1'+ 2 + 13 = 3 + 5 + 8.
Extensions
a(0), a(10)-a(18) from Alois P. Heinz, Dec 29 2022
a(19)-a(31) from David A. Corneth, Dec 30 2022