cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A003712 Expansion of e.g.f. sin(sin(x)) (odd powers only).

Original entry on oeis.org

1, -2, 12, -128, 1872, -37600, 990784, -32333824, 1272660224, -59527313920, 3252626013184, -204354574172160, 14594815769038848, -1174376539738169344, 105595092426069327872, -10530693390637550272512
Offset: 0

Views

Author

Keywords

Comments

abs(a(n)) has e.g.f. sinh(sinh(x)) (odd powers only).
abs(a(n)) is the number of partitions of the set {1, 2, ..., 2*n-1} into an odd number of blocks, each containing an odd number of elements. - Isabel C. Lugo (izzycat(AT)gmail.com), Aug 23 2004

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 226, 6th line of table.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    With[{max = 50}, Take[CoefficientList[Series[Sin[Sin[x]], {x, 0, max}], x] Range[0, max - 1]!, {2, -1, 2}]] (* Vincenzo Librandi, Apr 11 2014 *)
    Table[Sum[(-1)^(m + n) (1 + 2k - 2m)^(2n + 1)/(4^k (1 + 2k - m)! m!), {k, 0, n}, {m, 0, k + 1/2}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 07 2015 *)
  • Maxima
    a(n):=sum((sum((2*i-2*j+1)^(2*n+1)*binomial(2*j-1,i)*(-1)^(n-i-1),i,0,(2*j-1)/2)/(4^(j-1)*(2*j-1)!)),j,1,n+1); /* Vladimir Kruchinin, Jun 09 2011 */

Formula

a(n) = Sum_{j=1..n+1} (1/(4^(j-1)*(2*j-1)!)) * Sum_{i=0..(2*j-1)/2} (2*i-2*j+1)^(2*n+1) * binomial(2*j-1,i)*(-1)^(n-i-1). - Vladimir Kruchinin, Jun 09 2011

A359553 Numerator of the coefficient of x^(2n+1) in the Taylor series expansion of sin(sin(x)).

Original entry on oeis.org

1, -1, 1, -8, 13, -47, 15481, -15788, 451939, -23252857, 186846623, -831520891, 1108990801, -143356511198507, 920716137922619, -13390469094133441, 929480267163260699, -118186323448146684881, 69875813865886026036091, -155759565768613453511731
Offset: 0

Views

Author

Kevin Ryde, Jan 09 2023

Keywords

Comments

Denominators are A359554.
Sine is an odd function so the Taylor series has 0 coefficients at even terms x^(2n).
A003712(n) is the numerator for use with denominator (2n+1)! so that here a(n)/A359554(n) = A003712(n)/(2n+1)! reduced to least terms.
abs(a(n)) is the corresponding numerator in the expansion of sinh(sinh(x)).

Examples

			Fractions begin: 1, -1/3, 1/10, -8/315, 13/2520, -47/49896, ...
Series begins: sin(sin(x)) = x - (1/3)*x^3 + (1/10)*x^5 - (8/315)*x^7 + ...
		

Crossrefs

Cf. A359554 (denominators), A003712 (e.g.f. sin(sin(x))).

Programs

  • PARI
    a_vector(len) = apply(numerator, Vec(substpol(sin(sin(Ser('x,,2*len)))/'x, 'x^2,'x)));

Formula

a(n) = numerator of A003712(n)/(2n+1)!.
Sum_{n>=0} a(n)/A359554(n) * x^(2*n+1). = sin(sin(x)).
Sum_{n>=0} abs(a(n))/A359554(n) * x^(2*n+1). = sinh(sinh(x)).
Showing 1-2 of 2 results.