cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A359564 Primitive terms of A359563: terms of A359563 with no proper divisor in A359563.

Original entry on oeis.org

63, 273, 513, 585, 825, 2107, 2109, 2255, 3069, 3075, 4329, 4697, 4995, 5425, 5673, 6039, 6643, 6935, 6975, 7105, 7161, 8103, 8349, 8541, 8645, 9855, 10235, 11543, 12625, 13725, 13869, 14497, 14841, 16385, 18639, 18915, 19825, 22165, 25025, 26169, 26533, 30225
Offset: 1

Views

Author

Amiram Eldar, Jan 06 2023

Keywords

Comments

Odd numbers that are not in A326835 but all of their proper divisors are in it.
If k is a term then all the odd multiples of k are terms of A359563.

Crossrefs

Programs

  • Mathematica
    q[n_] := !UnsameQ @@ EulerPhi[Divisors[n]]; primQ[n_] := q[n] && AllTrue[Divisors[n], # == n || !q[#] &]; Select[Range[1, 30000, 2], primQ]
  • PARI
    is1(k) = k>1 && k%2 && numdiv(k) > #Set(apply(x->eulerphi(x), divisors(k)));
    is(k) = fordiv(k, d, if(is1(d), return(d==k))); return(0);

A359565 Numbers that have at least three divisors with the same value of the Euler totient function (A000010).

Original entry on oeis.org

12, 24, 36, 40, 48, 60, 72, 80, 84, 96, 108, 120, 126, 132, 144, 156, 160, 168, 180, 192, 200, 204, 216, 228, 240, 252, 264, 276, 280, 288, 300, 312, 320, 324, 336, 348, 360, 364, 372, 378, 384, 396, 400, 408, 420, 432, 440, 444, 456, 468, 480, 492, 504, 516, 520
Offset: 1

Views

Author

Amiram Eldar, Jan 06 2023

Keywords

Comments

The least odd term is a(392) = 3591, the least term that is coprime to 6 is a(34211) = 305515, and the least term that is coprime to 30 is a(158487) = 1413797.
If k is a term then all the multiples of k are terms. The primitive terms are in A359566.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 0, 10, 108, 1104, 11181, 112092, 1121784, 11221475, 112227492, 1122320814, ... . Apparently, the asymptotic density of this sequence exists and equals 0.1122... .

Examples

			12 is a term since its has 3 divisors, 3, 4 and 6, with the same value of the Euler totient function, 2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10^5, 2], Max[Tally[EulerPhi[Divisors[#]]][[;; , 2]]] > 2 &]
  • PARI
    is(k) = vecmax(matreduce(apply(x->eulerphi(x), divisors(k)))[,2]) > 2;

A359566 Primitive terms of A359565: terms of A359565 with no proper divisor in A359565.

Original entry on oeis.org

12, 40, 126, 364, 544, 546, 1026, 1100, 1170, 1650, 2812, 3591, 3608, 4095, 4100, 4214, 4218, 4510, 6138, 6150, 7564, 8658, 9394, 9548, 9990, 10804, 10850, 11096, 11132, 11346, 11368, 12078, 13286, 13870, 13950, 14210, 14322, 16206, 16376, 16698, 17082, 17290
Offset: 1

Views

Author

Amiram Eldar, Jan 06 2023

Keywords

Comments

If k is a term then all the positive multiples of k are terms of A359565.

Crossrefs

Programs

  • Mathematica
    q[n_] := Max[Tally[EulerPhi[Divisors[n]]][[;; , 2]]] > 2; primQ[n_] := q[n] && AllTrue[Divisors[n], # == n || !q[#] &]; Select[Range[17000], primQ]
  • PARI
    is1(k) = vecmax(matreduce(apply(x->eulerphi(x), divisors(k)))[,2]) > 2;
    is(k) = fordiv(k, d, if(is1(d), return(d==k))); return(0);

A373527 Odd numbers k such that k and k+2 both have at least two divisors with the same value of the Euler totient function (A000010).

Original entry on oeis.org

2107, 11275, 42651, 68733, 90153, 99123, 123633, 213003, 226825, 242305, 262143, 272853, 292873, 295405, 308007, 313443, 376675, 376803, 378693, 390115, 427425, 471293, 473263, 524797, 525481, 556983, 579535, 591325, 618469, 638163, 663325, 669123, 699853, 731815
Offset: 1

Views

Author

Amiram Eldar, Jun 08 2024

Keywords

Comments

Numbers k such that k and k+2 are both in A359563.

Crossrefs

Subsequence of A359563.
A373528 is a subsequence.

Programs

  • Mathematica
    q[n_] := q[n] = UnsameQ @@ EulerPhi[Divisors[n]]; Select[Range[1, 10^6, 2], ! q[#] && ! q[# + 2] &]
  • PARI
    is(k) = k>1 && k%2 && numdiv(k) > #Set(apply(x->eulerphi(x), divisors(k)));
    lista(kmax) = {my(q1 = 0, q2); forstep(k = 3, kmax, 2, q2 = is(k); if(q1 && q2, print1(k-2, ", ")); q1 = q2);}

A373528 Odd numbers k such that k, k+2 and k+4 all have at least two divisors with the same value of the Euler totient function (A000010).

Original entry on oeis.org

4142435, 26196331, 77118741, 89690821, 102974571, 196054673, 201060275, 206568171, 277322153, 280039833, 401784953, 402492695, 415097613, 437290371, 515636303, 526721895, 534746581, 549806211, 575090395, 580329603, 625833871, 629588043, 702183625, 710983971, 716133481
Offset: 1

Views

Author

Amiram Eldar, Jun 08 2024

Keywords

Comments

Numbers k such that k, k+2 and k+4 are all in A359563.

Crossrefs

Subsequence of A359563 and A373527.

Programs

  • Mathematica
    q[n_] := !UnsameQ @@ EulerPhi[Divisors[n]]; seq[kmax_] := Module[{tri = q /@ {1, 3, 5}, s = {}, k = 7}, While[k < kmax, If[And @@ tri, AppendTo[s, k - 6]]; tri = Join[Rest[tri], {q[k]}]; k+=2]; s]; seq[3*10^7]
  • PARI
    is(k) = k>1 && k%2 && numdiv(k) > #Set(apply(x->eulerphi(x), divisors(k)));
    lista(kmax) = {my(q1 = 0, q2 = 0, q3); forstep(k = 5, kmax, 2, q3 = is(k); if(q1 && q2 && q3, print1(k-4, ", ")); q1 = q2; q2 = q3);}

A373531 a(n) is the maximum number of divisors of n with an equal value of the Euler totient function (A000010).

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 08 2024

Keywords

Comments

The sums of the first 10^k terms, for k = 1, 2, ..., are 15, 161, 1641, 16554, 166029, 1662306, 16630535, 166335597, 1663473941, 16635216306, ... . Apparently, this sequence has an asymptotic mean 1.663... .

Examples

			a(2) = 2 since 2 has 2 divisors, 1 and 2, and phi(1) = phi(2) = 1.
a(12) = 3 since 3 of the divisors of 12 (3, 4 and 6) have the same value of phi: phi(3) = phi(4) = phi(6) = 2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Max[Tally[EulerPhi[Divisors[n]]][[;; , 2]]]; Array[a, 100]
  • PARI
    a(n) = vecmax(matreduce(apply(x->eulerphi(x), divisors(n)))[ , 2]);
    
  • Python
    from collections import Counter
    from sympy import divisors, totient
    def a(n):
        c = Counter(totient(d) for d in divisors(n, generator=True))
        return c.most_common(1)[0][1]
    print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Jun 08 2024

Formula

a(A326835(n)) = 1.
a(A359563(n)) >= 2.
a(A359565(n)) >= 3.
a(2*n) >= 2.
a(p) = 2 for an odd prime p.
a(m*n) >= a(n) for all m > 1.
Showing 1-6 of 6 results.