cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359577 Dirichlet inverse of A085731, where A085731 is the greatest common divisor of n and the arithmetic derivative of n.

Original entry on oeis.org

1, -1, -1, -3, -1, 1, -1, 3, -2, 1, -1, 3, -1, 1, 1, -3, -1, 2, -1, 3, 1, 1, -1, -3, -4, 1, -22, 3, -1, -1, -1, 3, 1, 1, 1, 6, -1, 1, 1, -3, -1, -1, -1, 3, 2, 1, -1, 3, -6, 4, 1, 3, -1, 22, 1, -3, 1, 1, -1, -3, -1, 1, 2, -3, 1, -1, -1, 3, 1, -1, -1, -6, -1, 1, 4, 3, 1, -1, -1, 3, 28, 1, -1, -3, 1, 1, 1, -3, -1, -2, 1, 3, 1, 1, 1, -3, -1, 6, 2, 12, -1, -1, -1, -3, -1
Offset: 1

Views

Author

Antti Karttunen, Jan 06 2023

Keywords

Comments

Multiplicative because A085731 is.

Crossrefs

Cf. A003415, A085731, A038838 (positions of even terms), A122132 (of odd terms), A353627 (parity of terms).

Programs

  • Maple
    g:= proc(n) option remember;
          igcd(n, n*add(i[2]/i[1], i=ifactors(n)[2]))
        end:
    a:= proc(n) option remember; `if`(n=1, 1, -add(
          a(d)*g(n/d), d=numtheory[divisors](n) minus {n}))
        end:
    seq(a(n), n=1..120);  # Alois P. Heinz, Jan 07 2023
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); s[n_] := GCD[n, d[n]]; a[1] = 1; a[n_] := a[n] = -DivisorSum[n, s[n/#]*a[#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Jan 07 2023 *)

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA085731(n/d) * a(d).