cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359614 a(n) is the minimal determinant of an n X n Hermitian Toeplitz matrix using all the integers 1, 2, ..., n and with all off-diagonal elements purely imaginary.

Original entry on oeis.org

1, 1, -3, -30, -256, -7595, -358301, -7665804, -227965955, -13089461984, -2467071630448
Offset: 0

Views

Author

Stefano Spezia, Jan 07 2023

Keywords

Examples

			a(4) = -256:
  [   4,  3*i,  2*i,   i;
   -3*i,    4,  3*i, 2*i;
   -2*i, -3*i,    4, 3*i;
     -i, -2*i, -3*i,   4 ]
		

Crossrefs

Cf. A359615 (maximal), A359616 (minimal permanent), A359617 (maximal permanent).

Programs

  • Mathematica
    a={1}; For[n=1, n<=8, n++, mn=Infinity; For[d=1, d<=n, d++, For[i=1, i<=(n-1)!, i++, If[(t=Det[ToeplitzMatrix[Join[{d}, I Part[Permutations[Drop[Range[n], {d}]], i]]]])
    				
  • Python
    from itertools import permutations
    from sympy import Matrix, I
    def A359614(n): return min(Matrix(n,n,[(d[i-j] if i>j else -d[j-i]) if i!=j else d[0]*I for i in range(n) for j in range(n)]).det()*(1,-I,-1,I)[n&3] for d in permutations(range(1,n+1))) # Chai Wah Wu, Jan 25 2023