A359614 a(n) is the minimal determinant of an n X n Hermitian Toeplitz matrix using all the integers 1, 2, ..., n and with all off-diagonal elements purely imaginary.
1, 1, -3, -30, -256, -7595, -358301, -7665804, -227965955, -13089461984, -2467071630448
Offset: 0
Examples
a(4) = -256: [ 4, 3*i, 2*i, i; -3*i, 4, 3*i, 2*i; -2*i, -3*i, 4, 3*i; -i, -2*i, -3*i, 4 ]
Links
- Wikipedia, Toeplitz Matrix.
Crossrefs
Programs
-
Mathematica
a={1}; For[n=1, n<=8, n++, mn=Infinity; For[d=1, d<=n, d++, For[i=1, i<=(n-1)!, i++, If[(t=Det[ToeplitzMatrix[Join[{d}, I Part[Permutations[Drop[Range[n], {d}]], i]]]])
-
Python
from itertools import permutations from sympy import Matrix, I def A359614(n): return min(Matrix(n,n,[(d[i-j] if i>j else -d[j-i]) if i!=j else d[0]*I for i in range(n) for j in range(n)]).det()*(1,-I,-1,I)[n&3] for d in permutations(range(1,n+1))) # Chai Wah Wu, Jan 25 2023