A359615
a(n) is the maximal determinant of an n X n Hermitian Toeplitz matrix using all the integers 1, 2, ..., n and with all off-diagonal elements purely imaginary.
Original entry on oeis.org
1, 1, 3, 9, 512, 9195, 242931, 7459494, 524426191, 17012915860, 773407040859
Offset: 0
a(4) = 512:
[ 1, 4*i, 2*i, 3*i;
-4*i, 1, 4*i, 2*i;
-2*i, -4*i, 1, 4*i;
-3*i, -2*i, -4*i, 1 ]
-
a={1}; For[n=1, n<=8, n++, mx=-Infinity; For[d=1, d<=n, d++, For[i=1, i<=(n-1)!, i++, If[(t=Det[ToeplitzMatrix[Join[{d}, I Part[Permutations[Drop[Range[n], {d}]], i]]]])>mx, mx=t]]]; AppendTo[a, mx]]; a
-
from itertools import permutations
from sympy import Matrix, I
def A359615(n): return max(Matrix(n,n,[(d[i-j] if i>j else -d[j-i]) if i!=j else d[0]*I for i in range(n) for j in range(n)]).det()*(1,-I,-1,I)[n&3] for d in permutations(range(1,n+1))) # Chai Wah Wu, Jan 25 2023
A359616
a(n) is the minimal permanent of an n X n Hermitian Toeplitz matrix using all the integers 1, 2, ..., n and with all off-diagonal elements purely imaginary.
Original entry on oeis.org
1, 1, 5, 18, 245, 2249, 57213, 947177, 50431724, 1282453618
Offset: 0
a(4) = 245:
[ 1, 3*i, 2*i, 4*i;
-3*i, 1, 3*i, 2*i;
-2*i, -3*i, 1, 3*i;
-4*i, -2*i, -3*i, 1 ]
-
a={1}; For[n=1, n<=7, n++, mn=Infinity; For[d=1, d<=n, d++, For[i=1, i<=(n-1)!, i++, If[(t=Permanent[ToeplitzMatrix[Join[{d}, I Part[Permutations[Drop[Range[n], {d}]], i]]]])
-
from itertools import permutations
from sympy import Matrix, I
def A359616(n): return min(Matrix(n,n,[(d[i-j] if i>j else -d[j-i]) if i!=j else d[0]*I for i in range(n) for j in range(n)]).per()*(1,-I,-1,I)[n&3] for d in permutations(range(1,n+1))) if n else 1 # Chai Wah Wu, Jan 25 2023
A359617
a(n) is the maximal permanent of an n X n Hermitian Toeplitz matrix using all the integers 1, 2, ..., n and with all off-diagonal elements purely imaginary.
Original entry on oeis.org
1, 1, 5, 54, 980, 26775, 1061841, 56647472, 4103545288, 367479636012
Offset: 0
a(4) = 980:
[ 4, 3*i, 2*i, i;
-3*i, 4, 3*i, 2*i;
-2*i, -3*i, 4, 3*i;
-i, -2*i, -3*i, 4 ]
-
a={1}; For[n=1, n<=7, n++, mx=-Infinity; For[d=1, d<=n, d++, For[i=1, i<=(n-1)!, i++, If[(t=Permanent[ToeplitzMatrix[Join[{d}, I Part[Permutations[Drop[Range[n], {d}]], i]]]])>mx, mx=t]]]; AppendTo[a, mx]]; a
-
from itertools import permutations
from sympy import Matrix, I
def A359617(n): return max(Matrix(n,n,[(d[i-j] if i>j else -d[j-i]) if i!=j else d[0]*I for i in range(n) for j in range(n)]).per()*(1,-I,-1,I)[n&3] for d in permutations(range(1,n+1))) if n else 1 # Chai Wah Wu, Jan 25 2023
A359559
a(n) is the determinant of an n X n Hermitian Toeplitz matrix whose first row consists of 1, 2*i, ..., n*i, where i denotes the imaginary unit.
Original entry on oeis.org
1, 1, -3, -16, -36, -40, 20, 184, 400, 432, -112, -1472, -3136, -3328, 576, 9856, 20736, 21760, -2816, -59392, -123904, -129024, 13312, 333824, 692224, 716800, -61440, -1785856, -3686400, -3801088, 278528, 9207808, 18939904, 19464192, -1245184, -46137344, -94633984
Offset: 0
a(3) = -16:
[ 1, 2*i, 3*i;
-2*i, 1, 2*i;
-3*i, -2*i, 1 ]
-
Join[{1},Table[Det[ToeplitzMatrix[Join[{1},I Range[2,n]]]],{n,36}]]
-
a(n) = matdet(matrix(n, n, i, j, if (i==j, 1, if (iMichel Marcus, Jan 20 2023
-
from sympy import Matrix, I
def A359559(n): return Matrix(n,n,[i-j+(1 if i>j else -1) if i!=j else I for i in range(n) for j in range(n)]).det()*(1,-I,-1,I)[n&3] # Chai Wah Wu, Jan 25 2023
A359560
a(n) is the permanent of an n X n Hermitian Toeplitz matrix whose first row consists of 1, 2*i, ..., n*i, where i denotes the imaginary unit.
Original entry on oeis.org
1, 1, 5, 18, 360, 2800, 151424, 1926704, 218991568, 3961998320, 815094714320, 19339258670304, 6524060415099520, 192715406460607360, 99364368150722162944, 3525158026102570745600, 2635328330670632415828224, 109381927750670379873854720, 113797518402277434839782802688
Offset: 0
a(3) = 18:
[ 1, 2*i, 3*i;
-2*i, 1, 2*i;
-3*i, -2*i, 1 ]
-
A359560 := proc(n)
local T,c,r ;
if n =0 then
return 1 ;
end if;
T := Matrix(n,n,shape=hermitian) ;
T[1,1] := 1 ;
for c from 2 to n do
T[1,c] := c*I ;
end do:
for r from 2 to n do
for c from r to n do
T[r,c] := T[r-1,c-1] ;
end do:
end do:
LinearAlgebra[Permanent](T) ;
simplify(%) ;
end proc:
seq(A359560(n),n=0..15) ; # R. J. Mathar, Jan 31 2023
-
Join[{1},Table[Permanent[ToeplitzMatrix[Join[{1},I Range[2,n]]]],{n,18}]]
-
a(n) = matpermanent(matrix(n, n, i, j, if (i==j, 1, if (iMichel Marcus, Jan 20 2023
-
from sympy import Matrix, I
def A359560(n): return Matrix(n,n,[i-j+(1 if i>j else -1) if i!=j else I for i in range(n) for j in range(n)]).per()*(1,-I,-1,I)[n&3] if n else 1 # Chai Wah Wu, Jan 25 2023
A364228
Triangle read by rows: T(n, k) is the number of n X n Hermitian Toeplitz matrices of rank k using all the integers 1, 2, ..., n and with all off-diagonal elements purely imaginary.
Original entry on oeis.org
1, 0, 2, 0, 1, 5, 0, 0, 0, 24, 0, 0, 0, 0, 120, 0, 0, 0, 0, 1, 719, 0, 0, 0, 0, 0, 0, 5040, 0, 0, 0, 0, 0, 2, 1, 40317, 0, 0, 0, 0, 0, 0, 0, 6, 362874, 0, 0, 0, 0, 0, 0, 1, 0, 1, 3628798
Offset: 1
The triangle begins:
1;
0, 2;
0, 1, 5;
0, 0, 0, 24;
0, 0, 0, 0, 120;
0, 0, 0, 0, 1, 719;
0, 0, 0, 0, 0, 0, 5040;
0, 0, 0, 0, 0, 2, 1, 40317;
0, 0, 0, 0, 0, 0, 0, 6, 362874;
0, 0, 0, 0, 0, 0, 1, 0, 1, 3628798;
...
-
T[n_,k_]:=Count[Flatten[Table[MatrixRank[ToeplitzMatrix[Join[{d}, I Part[Permutations[Drop[Range[n], {d}]], i]]]],{i,(n-1)!},{d,n}]],k]; Table[T[n,k],{n,9},{k,n}]//Flatten
A364229
a(n) is the number of n X n nonsingular Hermitian Toeplitz matrices using all the integers 1, 2, ..., n and with all off-diagonal elements purely imaginary.
Original entry on oeis.org
1, 2, 5, 24, 120, 719, 5040, 40317, 362874, 3628798
Offset: 1
-
a[n_]:=Count[Flatten[Table[MatrixRank[ToeplitzMatrix[Join[{d}, I Part[Permutations[Drop[Range[n], {d}]], i]]]],{i,(n-1)!},{d,n}]],n]; Array[a,9]
A359618
a(n) is the minimal absolute value of the determinant of a nonsingular n X n Hermitian Toeplitz matrix using all the integers 1, 2, ..., n and with off-diagonal elements purely imaginary.
Original entry on oeis.org
1, 1, 3, 9, 16, 21, 20, 17, 131, 62, 1
Offset: 0
a(4) = 16:
[ 1, 2*i, 4*i, 3*i;
-2*i, 1, 2*i, 4*i;
-4*i, -2*i, 1, 2*i;
-3*i, -4*i, -2*i, 1 ]
-
a={1}; For[n=1, n<=8, n++, mn=Infinity; For[d=1, d<=n, d++, For[i=1, i<=(n-1)!, i++, If[0<(t=Abs[Det[ToeplitzMatrix[Join[{d}, I Part[Permutations[Drop[Range[n], {d}]], i]]]]])
Showing 1-8 of 8 results.