A359616
a(n) is the minimal permanent of an n X n Hermitian Toeplitz matrix using all the integers 1, 2, ..., n and with all off-diagonal elements purely imaginary.
Original entry on oeis.org
1, 1, 5, 18, 245, 2249, 57213, 947177, 50431724, 1282453618
Offset: 0
a(4) = 245:
[ 1, 3*i, 2*i, 4*i;
-3*i, 1, 3*i, 2*i;
-2*i, -3*i, 1, 3*i;
-4*i, -2*i, -3*i, 1 ]
-
a={1}; For[n=1, n<=7, n++, mn=Infinity; For[d=1, d<=n, d++, For[i=1, i<=(n-1)!, i++, If[(t=Permanent[ToeplitzMatrix[Join[{d}, I Part[Permutations[Drop[Range[n], {d}]], i]]]])
-
from itertools import permutations
from sympy import Matrix, I
def A359616(n): return min(Matrix(n,n,[(d[i-j] if i>j else -d[j-i]) if i!=j else d[0]*I for i in range(n) for j in range(n)]).per()*(1,-I,-1,I)[n&3] for d in permutations(range(1,n+1))) if n else 1 # Chai Wah Wu, Jan 25 2023
A359617
a(n) is the maximal permanent of an n X n Hermitian Toeplitz matrix using all the integers 1, 2, ..., n and with all off-diagonal elements purely imaginary.
Original entry on oeis.org
1, 1, 5, 54, 980, 26775, 1061841, 56647472, 4103545288, 367479636012
Offset: 0
a(4) = 980:
[ 4, 3*i, 2*i, i;
-3*i, 4, 3*i, 2*i;
-2*i, -3*i, 4, 3*i;
-i, -2*i, -3*i, 4 ]
-
a={1}; For[n=1, n<=7, n++, mx=-Infinity; For[d=1, d<=n, d++, For[i=1, i<=(n-1)!, i++, If[(t=Permanent[ToeplitzMatrix[Join[{d}, I Part[Permutations[Drop[Range[n], {d}]], i]]]])>mx, mx=t]]]; AppendTo[a, mx]]; a
-
from itertools import permutations
from sympy import Matrix, I
def A359617(n): return max(Matrix(n,n,[(d[i-j] if i>j else -d[j-i]) if i!=j else d[0]*I for i in range(n) for j in range(n)]).per()*(1,-I,-1,I)[n&3] for d in permutations(range(1,n+1))) if n else 1 # Chai Wah Wu, Jan 25 2023
A359559
a(n) is the determinant of an n X n Hermitian Toeplitz matrix whose first row consists of 1, 2*i, ..., n*i, where i denotes the imaginary unit.
Original entry on oeis.org
1, 1, -3, -16, -36, -40, 20, 184, 400, 432, -112, -1472, -3136, -3328, 576, 9856, 20736, 21760, -2816, -59392, -123904, -129024, 13312, 333824, 692224, 716800, -61440, -1785856, -3686400, -3801088, 278528, 9207808, 18939904, 19464192, -1245184, -46137344, -94633984
Offset: 0
a(3) = -16:
[ 1, 2*i, 3*i;
-2*i, 1, 2*i;
-3*i, -2*i, 1 ]
-
Join[{1},Table[Det[ToeplitzMatrix[Join[{1},I Range[2,n]]]],{n,36}]]
-
a(n) = matdet(matrix(n, n, i, j, if (i==j, 1, if (iMichel Marcus, Jan 20 2023
-
from sympy import Matrix, I
def A359559(n): return Matrix(n,n,[i-j+(1 if i>j else -1) if i!=j else I for i in range(n) for j in range(n)]).det()*(1,-I,-1,I)[n&3] # Chai Wah Wu, Jan 25 2023
A359561
a(n) is the determinant of an n X n Hermitian Toeplitz matrix whose first row consists of n, (n-1)*i, (n-2)*i, ..., 3*i, 2*i, i, where i denotes the imaginary unit.
Original entry on oeis.org
1, 1, 3, 0, -256, -5000, -46656, 941192, 67108864, 2066242608, 24000000000, -1659995174464, -142657607172096, -5964309791355136, -76196618232397824, 11210083593750000000, 1180591620717411303424, 62286325600853591655680, 839390038939659468275712, -213252813410122222659258368
Offset: 0
a(3) = 0:
[ 3, 2*i, i;
-2*i, 3, 2*i;
-i, -2*i, 3 ]
Cf.
A307783 (symmetric Toeplitz matrix).
-
A359561 := proc(n)
local T,c,r ;
if n =0 then
return 1 ;
end if;
T := Matrix(n,n) ;
T[1,1] := n ;
for c from 2 to n do
T[1,c] := (n-c+1)*I ;
end do:
for r from 2 to n do
for c from 1 to r-1 do
T[r,c] := -T[c,r] ;
end do:
for c from r to n do
T[r,c] := T[r-1,c-1] ;
end do:
end do:
LinearAlgebra[Determinant](T) ;
simplify(%) ;
end proc:
seq(A359561(n),n=0..25) ; # R. J. Mathar, Jan 31 2023
-
Join[{1},Table[Det[ToeplitzMatrix[Join[{n},I Reverse[Range[n-1]]]]],{n,19}]]
-
from sympy import Matrix, I
def A359561(n): return Matrix(n,n,[(n+j-i if i>j else j-i-n) if i!=j else n*I for i in range(n) for j in range(n)]).det()*(1,-I,-1,I)[n&3] # Chai Wah Wu, Jan 25 2023
A359562
a(n) is the permanent of an n X n Hermitian Toeplitz matrix whose first row consists of n, (n-1)*i, (n-2)*i, ..., 3*i, 2*i, i, where i denotes the imaginary unit.
Original entry on oeis.org
1, 1, 5, 54, 980, 26000, 977844, 48486480, 3168454720, 257625275760, 26347709832000, 3217348801257888, 477582176242255104, 82066363639286366080, 16709994767104962690304, 3847766849105116759200000, 1029727509567022262979280896, 306114655769763238348323419392, 104188715467117934409088054935552
Offset: 0
a(3) = 54:
[ 3, 2*i, i;
-2*i, 3, 2*i;
-i, -2*i, 3 ]
Cf.
A307783 (symmetric Toeplitz matrix).
-
Join[{1},Table[Permanent[ToeplitzMatrix[Join[{n},I Reverse[Range[n-1]]]]],{n,18}]]
-
from sympy import Matrix, I
def A359562(n): return Matrix(n,n,[(n+j-i if i>j else j-i-n) if i!=j else n*I for i in range(n) for j in range(n)]).per()*(1,-I,-1,I)[n&3] if n else 1 # Chai Wah Wu, Jan 25 2023
Showing 1-5 of 5 results.