A359678 Number of multisets (finite weakly increasing sequences of positive integers) with zero-based weighted sum (A359674) equal to n > 0.
1, 2, 4, 4, 6, 9, 8, 10, 14, 13, 16, 21, 17, 22, 28, 23, 30, 37, 30, 38, 46, 38, 46, 59, 46, 55, 70, 59, 70, 86, 67, 81, 96, 84, 98, 115, 95, 114, 135, 114, 132, 158, 127, 156, 178, 148, 176, 207, 172, 201, 227, 196, 228, 270, 222, 255, 296, 255, 295, 338, 278
Offset: 1
Keywords
Examples
The a(1) = 1 through a(8) = 10 multisets: {1,1} {1,2} {1,3} {1,4} {1,5} {1,6} {1,7} {1,8} {2,2} {2,3} {2,4} {2,5} {2,6} {2,7} {2,8} {3,3} {3,4} {3,5} {3,6} {3,7} {3,8} {1,1,1} {4,4} {4,5} {4,6} {4,7} {4,8} {5,5} {5,6} {5,7} {5,8} {1,1,2} {6,6} {6,7} {6,8} {1,2,2} {7,7} {7,8} {2,2,2} {1,1,3} {8,8} {1,1,1,1} {1,2,3} {2,2,3}
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
zz[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&&GreaterEqual @@ Differences[Append[#,0]]&]; Table[Sum[Append[z,0][[1]]-Append[z,0][[2]],{z,zz[n]}],{n,30}]
-
PARI
seq(n)={Vec(sum(k=2, (sqrtint(8*n+1)+1)\2, my(t=binomial(k, 2)); x^t/((1-x^t)*prod(j=1, k-1, 1 - x^(t-binomial(j, 2)) + O(x^(n-t+1))))))} \\ Andrew Howroyd, Jan 22 2023
Formula
G.f.: Sum_{k>=2} x^binomial(k,2)/((1 - x^binomial(k,2))*Product_{j=1..k-1} (1 - x^(binomial(k,2)-binomial(j,2)))). - Andrew Howroyd, Jan 22 2023
Comments