A359961 Smallest Zuckerman number (A007602) with exactly n distinct prime factors.
1, 2, 6, 132, 3276, 27132, 1117116, 111914712, 6111417312, 1113117121116, 1112712811322112, 11171121131111172
Offset: 0
Examples
3276 = 2^2*3^2*7*13 is the smallest integer with 4 distinct prime factors that is also Zuckerman number as 3276 / (3*2*7*6) = 13, so a(4) = 3276.
Links
- Giovanni Resta, Zuckerman numbers, Numbers Aplenty.
- Eric Weisstein's World of Mathematics, Distinct Prime Factors.
Programs
-
PARI
a(n) = my(k=1); while (!(p=vecprod(digits(k))) || (k % p) || (omega(k) != n), k++); k; \\ Michel Marcus, Jan 21 2023
Extensions
a(6)-a(7) from Michel Marcus, Jan 21 2023
a(8)-a(9) from Daniel Suteu, Jan 21 2023
a(10)-a(11) from Bert Dobbelaere, Jan 29 2023
Comments