A359985 Triangle read by rows: T(n,k) is the number of quasi series-parallel matroids on [n] with rank k, 0 <= k <= n.
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 35, 15, 1, 1, 31, 155, 155, 31, 1, 1, 63, 651, 1365, 651, 63, 1, 1, 127, 2667, 10941, 10941, 2667, 127, 1, 1, 255, 10795, 82215, 156597, 82215, 10795, 255, 1, 1, 511, 43435, 589135, 1988007, 1988007, 589135, 43435, 511, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 3, 1; 1, 7, 7, 1; 1, 15, 35, 15, 1; 1, 31, 155, 155, 31, 1; 1, 63, 651, 1365, 651, 63, 1; 1, 127, 2667, 10941, 10941, 2667, 127, 1; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
- Luis Ferroni and Matt Larson, Kazhdan-Lusztig polynomials of braid matroids, arXiv:2303.02253 [math.CO], 2023.
- Nicholas Proudfoot, Yuan Xu, and Ben Young, On the enumeration of series-parallel matroids, arXiv:2406.04502 [math.CO], 2024.
Programs
-
PARI
\\ Proposition 2.3, 2.8 in Ferroni/Larson, compare A140945. T(n) = {[Vecrev(p) | p<-Vec(serlaplace(exp(x*(y+1) + y*intformal( serreverse(log(1 + x*y + O(x^n))/y + log(1 + x + O(x^n)) - x)))))]} { my(A=T(8)); for(i=1, #A, print(A[i])) }
Comments