cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A140945 Triangle read by rows: counts series-parallel networks by the number of series connections.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 25, 25, 1, 1, 90, 290, 90, 1, 1, 301, 2450, 2450, 301, 1, 1, 966, 17451, 41580, 17451, 966, 1, 1, 3025, 112035, 544971, 544971, 112035, 3025, 1, 1, 9330, 671980, 6076350, 12122502, 6076350, 671980, 9330, 1, 1, 28501, 3846700, 60738700, 217523922, 217523922, 60738700, 3846700, 28501, 1
Offset: 1

Views

Author

Brian Drake, Jul 24 2008

Keywords

Comments

T(n,k) is the number of series-parallel matroids on [n+1] of rank k. - Andrew Howroyd, Mar 08 2023

Examples

			Triangle begins:
  1;
  1,   1;
  1,   6,     1;
  1,  25,    25,     1;
  1,  90,   290,    90,     1;
  1, 301,  2450,  2450,   301,   1;
  1, 966, 17451, 41580, 17451, 966, 1;
  ...
		

Crossrefs

Row sums are A006351.
Second column is A000392.
Cf. A359985.

Programs

  • Maple
    N:=6: 1/a*log(1+a*y)+1*log(1+b*y)/b-y=x: solve(%, y):series(%, x, N): simplify(%, symbolic): convert(%, polynom): subs(b=1, %): R:= [seq(i!*coeff(%, x, i), i=1..N-1)]: seq( seq(coeff(R[i], a, j), j=0..i-1), i=1..N-1);
  • PARI
    T(n) = {[Vecrev(p) | p<-Vec(serlaplace(intformal(serreverse(log(1 + x*y + O(x*x^n))/y + log(1 + x + O(x*x^n)) - x))))]}
    { my(A=T(10)); for(i=1, #A, print(A[i])) }  \\ Andrew Howroyd, Mar 08 2023

Formula

E.g.f. is reversion of log(1+ax)/a+log(1+bx)/b-x.
Let f(x,t) = (1+x)*(1+x*t)/(1-x^2*t) and let D be the operator f(x,t)*d/dx. Then the n-th row polynomial equals (D^n)(f(x,t)) evaluated at x = 0. - Peter Bala, Sep 29 2011

A359986 Number of quasi series-parallel matroids on [n].

Original entry on oeis.org

1, 2, 5, 16, 67, 374, 2795, 27472, 343129, 5242178, 94775045, 1976279584, 46619596363, 1225918376726, 35526110971595, 1124201803439968, 38555828073355441, 1424165085382532162, 56356111920073052165, 2378150844047351691376, 106590791633357076443347
Offset: 0

Views

Author

Andrew Howroyd, Mar 08 2023

Keywords

Comments

A quasi series-parallel matroid is a collection of series-parallel matroids. See the Ferroni/Larson reference for a precise definition.

Crossrefs

Row sums of A359985.

Programs

  • PARI
    seq(n)=Vec(serlaplace( exp(2*x + intformal(serreverse(2*log(1 + x + O(x^n)) - x))) ))
    
  • PARI
    seq(n) = Vec(serlaplace( exp(2*x + intformal(-x + 2*serreverse(1 + 2*x - exp(x + O(x^n))))) ))

A361355 Triangle read by rows: T(n,k) is the number of simple series-parallel matroids on [n] with rank k, 1 <= k <= n.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 15, 1, 0, 0, 0, 0, 75, 1, 0, 0, 0, 0, 735, 280, 1, 0, 0, 0, 0, 0, 9345, 938, 1, 0, 0, 0, 0, 0, 76545, 77805, 2989, 1, 0, 0, 0, 0, 0, 0, 1865745, 536725, 9285, 1, 0, 0, 0, 0, 0, 0, 13835745, 27754650, 3334870, 28446, 1, 0
Offset: 1

Views

Author

Andrew Howroyd, Mar 09 2023

Keywords

Examples

			Triangle begins:
  1;
  0, 0;
  0, 1,  0;
  0, 0,  1,   0;
  0, 0, 15,   1,     0;
  0, 0,  0,  75,     1,     0;
  0, 0,  0, 735,   280,     1,    0;
  0, 0,  0,   0,  9345,   938,    1, 0;
  0, 0,  0,   0, 76545, 77805, 2989, 1, 0;
  ...
		

Crossrefs

Row sums are A007834.

Programs

  • PARI
    \\ B gives A359985 as e.g.f.
    B(n)= {exp(x*(1+y) + y*intformal(serreverse(log(1 + x*y + O(x^n))/y + log(1 + x + O(x^n)) - x)))}
    T(n) = {my(v=Vec(serlaplace(log(subst(B(n), x, log(1 + x + O(x*x^n)))/(1 + x))))); vector(#v, n, Vecrev(v[n]/y, n))}
    { my(A=T(9)); for(i=1, #A, print(A[i])) }

Formula

E.g.f.: A(x,y) = log(1 + B(x,y)) where B(x,y) is the e.g.f. of A361353.
E.g.f.: A(x,y) = log(B(log(1 + x), y)/(1 + x)) where B(x,y) is the e.g.f. of A359985.
T(2*n+1, n+1) = A034941(n).
T(2*n, n+1) = A361282(n).

A361353 Triangle read by rows: T(n,k) is the number of simple quasi series-parallel matroids on [n] with rank k, 1 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 5, 1, 0, 0, 15, 16, 1, 0, 0, 0, 175, 42, 1, 0, 0, 0, 735, 1225, 99, 1, 0, 0, 0, 0, 16065, 6769, 219, 1, 0, 0, 0, 0, 76545, 204400, 32830, 466, 1, 0, 0, 0, 0, 0, 2747745, 2001230, 147466, 968, 1, 0, 0, 0, 0, 0, 13835745, 56143395, 16813720, 632434, 1981, 1
Offset: 1

Views

Author

Andrew Howroyd, Mar 09 2023

Keywords

Comments

See Table 2 in the Ferroni/Larson reference.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,  1;
  0, 0,  5,   1;
  0, 0, 15,  16,     1;
  0, 0,  0, 175,    42,      1;
  0, 0,  0, 735,  1225,     99,     1;
  0, 0,  0,   0, 16065,   6769,   219,   1;
  0, 0,  0,   0, 76545, 204400, 32830, 466, 1;
  ...
		

Crossrefs

Row sums are A361354.

Programs

  • PARI
    \\ B gives A359985 as e.g.f.
    B(n)= {exp(x*(1+y) + y*intformal(serreverse(log(1 + x*y + O(x^n))/y + log(1 + x + O(x^n)) - x)))}
    T(n) = {[Vecrev(p/y) | p<-Vec(serlaplace(subst(B(n), x, log(1 + x + O(x*x^n)))/(1 + x) - 1))]}
    { my(A=T(9)); for(i=1, #A, print(A[i])) }

Formula

E.g.f.: A(x,y) = B(log(1 + x), y)/(1 + x) - 1 where B(x,y) is the e.g.f. of A359985.
Showing 1-4 of 4 results.