cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A359985 Triangle read by rows: T(n,k) is the number of quasi series-parallel matroids on [n] with rank k, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 35, 15, 1, 1, 31, 155, 155, 31, 1, 1, 63, 651, 1365, 651, 63, 1, 1, 127, 2667, 10941, 10941, 2667, 127, 1, 1, 255, 10795, 82215, 156597, 82215, 10795, 255, 1, 1, 511, 43435, 589135, 1988007, 1988007, 589135, 43435, 511, 1
Offset: 0

Views

Author

Andrew Howroyd, Mar 08 2023

Keywords

Comments

A quasi series-parallel matroid is a collection of series-parallel matroids. See the Ferroni/Larson reference for a precise definition.
The first six rows of this triangle are the same as A022166.

Examples

			Triangle begins:
  1;
  1,   1;
  1,   3,    1;
  1,   7,    7,     1;
  1,  15,   35,    15,     1;
  1,  31,  155,   155,    31,    1;
  1,  63,  651,  1365,   651,   63,   1;
  1, 127, 2667, 10941, 10941, 2667, 127, 1;
  ...
		

Crossrefs

Row sums are A359986.
Columns k=0..2 are A000012, A000225, A006095.

Programs

  • PARI
    \\ Proposition 2.3, 2.8 in Ferroni/Larson, compare A140945.
    T(n) = {[Vecrev(p) | p<-Vec(serlaplace(exp(x*(y+1) + y*intformal( serreverse(log(1 + x*y + O(x^n))/y + log(1 + x + O(x^n)) - x)))))]}
    { my(A=T(8)); for(i=1, #A, print(A[i])) }

A007834 Number of point labeled reduced 5-free two-graphs with n nodes.

Original entry on oeis.org

1, 0, 1, 1, 16, 76, 1016, 10284, 157340, 2411756, 44953712, 899824256, 20283419872, 495216726096, 13202082981712, 378896535199888, 11690436112988224, 385173160930360192, 13509981115738946816, 502374681770910293568, 19746124320077115154112, 817908018939079281840320
Offset: 1

Views

Author

Keywords

Crossrefs

Row sums are A361355.

Programs

  • Mathematica
    CoefficientList[Series[-2*LambertW[-1/2*E^(-1/2)*(1+x)^(1/2)]/(1+x), {x, 0, 15}], x]* Range[0, 15]! (* Vaclav Kotesovec, Sep 30 2013 *)
  • PARI
    \\ B(x) gives the e.g.f. of A359986.
    B(n)={exp(2*x + intformal(serreverse(log(1 + x + O(x^n)) + log(1 + x + O(x^n)) - x)))}
    seq(n)={Vec(serlaplace(log(subst(B(n), x, log(1 + x + O(x*x^n)))/(1 + x))))} \\ Andrew Howroyd, Oct 15 2024

Formula

E.g.f.: -2*LambertW(-1/2*exp(-1/2)*(1+x)^(1/2))/(1+x). - Vladeta Jovovic, Aug 21 2006
a(n) ~ sqrt(2)*sqrt(4-exp(1)) * n^(n-1) / (8*exp(n-1)*(4*exp(-1)-1)^n). - Vaclav Kotesovec, Sep 30 2013
E.g.f.: log(B(log(1 + x))/(1 + x)), where B(x) is the e.g.f. of A359986. - Andrew Howroyd, Oct 15 2024

Extensions

a(20) onwards from Andrew Howroyd, Oct 15 2024

A361354 Number of simple quasi series-parallel matroids on [n].

Original entry on oeis.org

1, 1, 2, 6, 32, 218, 2060, 23054, 314242, 4897410, 87427276, 1741312444, 38482278928, 931618115860, 24554678866736, 699328394272236, 21410158708401980, 701011980397033052, 24445424273647475096, 904440666571331841992, 35386719095200164370912, 1459756349974815778252152
Offset: 1

Views

Author

Andrew Howroyd, Mar 09 2023

Keywords

Crossrefs

Row sums of A361353.

Programs

  • PARI
    seq(n) = Vec(serlaplace( -1 + subst(exp(2*x + intformal(-x + 2*serreverse(1 + 2*x - exp(x + O(x^n))))), x, log(1 + x + O(x*x^n)))/(1 + x) ))

Formula

E.g.f.: B(1 + log(x))/(1 + x) - 1 where B(x) is the e.g.f. of A359986.
E.g.f.: exp(B(x)) where B(x) is the e.g.f. of A007834.
Showing 1-3 of 3 results.