cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A360294 a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(n-1-2*k,k) * binomial(2*n-6*k,n-3*k).

Original entry on oeis.org

1, 2, 6, 20, 68, 240, 864, 3154, 11628, 43196, 161430, 606228, 2285780, 8647738, 32811378, 124804104, 475748330, 1817005536, 6951390372, 26634502642, 102189927918, 392559063268, 1509684132394, 5811772604124, 22394185567728, 86364110132930, 333329513935842
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[1-4 x/(1+x^3)],{x,0,40}],x] (* Harvey P. Dale, Feb 06 2023 *)
  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*binomial(n-1-2*k, k)*binomial(2*n-6*k, n-3*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x^3)))

Formula

G.f.: 1 / sqrt(1-4*x/(1+x^3)).
n*a(n) = 2*(2*n-1)*a(n-1) - 2*(n-3)*a(n-3) + 2*(2*n-10)*a(n-4) - (n-6)*a(n-6).

A360295 a(n) = Sum_{k=0..floor(n/4)} (-1)^k * binomial(n-1-3*k,k) * binomial(2*n-8*k,n-4*k).

Original entry on oeis.org

1, 2, 6, 20, 70, 250, 912, 3372, 12590, 47362, 179230, 681528, 2601896, 9966798, 38288420, 147453664, 569092438, 2200577502, 8523612766, 33064771524, 128438624798, 499525018638, 1944918241388, 7580283784548, 29571439970136, 115459524588322, 451157870454298
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, (-1)^k*binomial(n-1-3*k, k)*binomial(2*n-8*k, n-4*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x^4)))

Formula

G.f.: 1 / sqrt(1-4*x/(1+x^4)).
n*a(n) = 2*(2*n-1)*a(n-1) - 2*(n-4)*a(n-4) + 2*(2*n-13)*a(n-5) - (n-8)*a(n-8).

A360290 a(n) = Sum_{k=0..floor(n/2)} binomial(n-1-k,k) * binomial(2*n-4*k,n-2*k).

Original entry on oeis.org

1, 2, 6, 22, 82, 314, 1222, 4814, 19138, 76626, 308550, 1248230, 5069266, 20654602, 84392838, 345659166, 1418769154, 5834283298, 24031706246, 99134911542, 409495076050, 1693539077210, 7011618614342, 29058701620974, 120540377731266, 500443750830962
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2023

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n-1-k, k) * Binomial(2*n-4*k, n-2*k): k in [0..Floor(n div 2)]]: n in [0..30]]; // Vincenzo Librandi, May 04 2025
  • Mathematica
    Table[Sum[Binomial[n-1-k,k]* Binomial[2*n-4*k, n-2*k],{k,0,Floor[n/2]}],{n,0,35}] (* Vincenzo Librandi, May 04 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, binomial(n-1-k, k)*binomial(2*n-4*k, n-2*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1-x^2)))
    

Formula

G.f.: 1 / sqrt(1-4*x/(1-x^2)).
n*a(n) = 2*(2*n-1)*a(n-1) + 2*(n-2)*a(n-2) - 2*(2*n-7)*a(n-3) - (n-4)*a(n-4).
a(n) ~ phi^(3*n) / (5^(1/4) * sqrt(Pi*n/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Feb 02 2023
a(n) = A383573(n) - A383573(n-2). - Seiichi Manyama, May 01 2025

A360313 a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(n-1-k,n-2*k) * binomial(2*k,k).

Original entry on oeis.org

1, 0, -2, -2, 4, 10, -4, -38, -22, 114, 188, -234, -914, -18, 3376, 3338, -9416, -21718, 14416, 96338, 39274, -328558, -471344, 795398, 2586064, -517690, -10453424, -8272658, 32186818, 63596494, -61876584, -307070174, -62655330, 1129250706, 1356328788
Offset: 0

Views

Author

Seiichi Manyama, Feb 03 2023

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==0,a[2]==-2,a[n]==1/n (2(n-1)a[n-1]-(5n-6)a[n-2]+2(2n-5)a[n-3])},a,{n,40}] (* Harvey P. Dale, Sep 20 2024 *)
  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(n-1-k, n-2*k)*binomial(2*k, k));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/sqrt(1+4*x^2/(1-x)))

Formula

G.f.: 1 / sqrt(1+4*x^2/(1-x)).
n*a(n) = 2*(n-1)*a(n-1) - (5*n-6)*a(n-2) + 2*(2*n-5)*a(n-3).
Showing 1-4 of 4 results.