cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A360333 Array read by antidiagonals downwards: A(n,m) = number of set partitions of [4n] into 4-element subsets {i, i+k, i+2k, i+3k} with 1 <= k <= m.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 4, 7, 8, 1, 1, 2, 4, 10, 13, 13, 1, 1, 2, 4, 11, 19, 24, 21, 1, 1, 2, 4, 11, 22, 41, 44, 34, 1, 1, 2, 4, 11, 23, 48, 84, 81, 55, 1, 1, 2, 4, 11, 23, 64, 101, 180, 149, 89, 1
Offset: 1

Views

Author

Peter Dolland, Feb 03 2023

Keywords

Examples

			Square array begins:
  1,  1,   1,   1,   1,   1,   1,   1,    1, ...
  1,  2,   2,   2,   2,   2,   2,   2,    2, ...
  1,  3,   4,   4,   4,   4,   4,   4,    4, ...
  1,  5,   7,  10,  11,  11,  11,  11,   11, ...
  1,  8,  13,  19,  22,  23,  23,  23,   23, ...
  1, 13,  24,  41,  48,  64,  68,  68,   68, ...
  1, 21,  44,  84, 101, 134, 147, 148,  161, ...
  1, 34,  81, 180, 225, 318, 353, 409,  444, ...
  1, 55, 149, 372, 485, 721, 814, 929, 1092, ...
  ...
		

Crossrefs

Main diagonal is A337520.
Columns 1..3 are A000012, A000045(n+1), A000073(n+2).

Formula

A(n,m) = A104430(n) = A104443(n,4) for m >= floor((4n - 1) / 3).

A360335 Array read by antidiagonals downwards: A(n,m) = number of set partitions of [2n] into 2-element subsets {i, i+k} with 1 <= k <= m.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 7, 5, 1, 1, 3, 12, 16, 8, 1, 1, 3, 15, 35, 38, 13, 1, 1, 3, 15, 63, 105, 89, 21, 1, 1, 3, 15, 90, 226, 329, 209, 34, 1, 1, 3, 15, 105, 417, 841, 1014, 491, 55, 1, 1, 3, 15, 105, 645, 1787, 3251, 3116, 1153, 89, 1
Offset: 1

Views

Author

Peter Dolland, Feb 03 2023

Keywords

Examples

			Square array begins:
  1,  1,    1,    1,     1,      1,      1,       1,       1, ...
  1,  2,    3,    3,     3,      3,      3,       3,       3, ...
  1,  3,    7,   12,    15,     15,     15,      15,      15, ...
  1,  5,   16,   35,    63,     90,    105,     105,     105, ...
  1,  8,   38,  105,   226,    417,    645,     840,     945, ...
  1, 13,   89,  329,   841,   1787,   3348,    5445,    7665, ...
  1, 21,  209, 1014,  3251,   7938,  16717,   31647,   53250, ...
  1, 34,  491, 3116, 12483,  36500,  86311,  180560,  344403, ...
  1, 55, 1153, 9610, 47481, 167631, 459803, 1062435, 2211181, ...
  ...
		

Crossrefs

Main diagonal is A014307.
Columns 1..4 are A000012, A000045(n+1), A052967, A320346.

Formula

A(n,m) = A001147(n) = A104443(n,2) for m >= 2n - 1.

A334250 Number of set partitions of [3n] into 3-element subsets {i, i+k, i+2k} with 1<=k<=n.

Original entry on oeis.org

1, 1, 2, 4, 12, 35, 129, 567, 2920, 16110, 103467, 717608, 5748214, 47937957, 441139750, 4319093093, 45963368076, 510202534002, 6150655137844, 76789781005325, 1028853084775725, 14294680087131380
Offset: 0

Views

Author

Alois P. Heinz, Apr 20 2020

Keywords

Comments

Differs from A331621 first at n=7.

Examples

			a(2) = 2: 123|456, 135|246.
a(3) = 4: 123|456|789, 123|468|579, 135|246|789, 147|258|369.
		

Crossrefs

Cf. A014307 (the same for 2-element subsets), A025035, A059108, A104429 (where k is not restricted), A285527, A331621, A337520.
Main diagonal of A360334.

Programs

  • Maple
    b:= proc(s, t) option remember; `if`(s={}, 1, (m-> add(
         `if`({m-j, m-2*j} minus s={}, b(s minus {m, m-j, m-2*j},
                t), 0), j=1..min(t, iquo(m-1, 2))))(max(s)))
        end:
    a:= proc(n) option remember; forget(b): b({$1..3*n}, n) end:
    seq(a(n), n=0..12);
  • Mathematica
    b[s_List, t_] := b[s, t] = If[s == {}, 1, Function[m, Sum[If[{m - j, m - 2j} ~Complement~ s == {}, b[s ~Complement~ {m, m - j, m - 2j}, t], 0], {j, 1, Min[t, Quotient[m - 1, 2]]}]][Max[s]]];
    a[n_] := a[n] = b[Range[3n], n];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 12}] (* Jean-François Alcover, May 10 2020, after Maple *)

Formula

a(n) <= A104429(n) <= A025035(n).

Extensions

a(17)-a(21) from Martin Fuller, Jul 19 2025
Showing 1-3 of 3 results.