cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A104429 Number of ways to split {1, 2, 3, ..., 3n} into n arithmetic progressions each with 3 terms.

Original entry on oeis.org

1, 1, 2, 5, 15, 55, 232, 1161, 6643, 44566, 327064, 2709050, 24312028, 240833770, 2546215687, 29251369570, 355838858402, 4658866773664, 64127566159756, 940320691236206
Offset: 0

Views

Author

Jonas Wallgren, Mar 17 2005

Keywords

Examples

			{{{1,2,3},{4,5,6},{7,8,9}}, {{1,2,3},{4,6,8},{5,7,9}}, {{1,3,5},{2,4,6},{7,8,9}}, {{1,4,7},{2,5,8},{3,6,9}}, {{1,5,9},{2,3,4},{6,7,8}}} are the 5 ways to split 1, 2, 3, ..., 9 into 3 arithmetic progressions each with 3 elements. Thus a(3)=5.
		

References

  • R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, Univ. Calgary, Dept. Mathematics, Research Paper No. 129, 1971.
  • R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, in Proc. Conf. Number Theory. Pullman, WA, 1971, pp. 221-223.
  • R. K. Guy, Packing [1,n] with solutions of ax + by = cz; the unity of combinatorics, in Colloq. Internaz. Teorie Combinatorie. Rome, 1973, Atti Conv. Lincei. Vol. 17, Part II, pp. 173-179, 1976.

Crossrefs

All of A279197, A279198, A202705, A279199, A282615 are concerned with counting solutions to X+Y=2Z in various ways.
See also A002848, A002849, A334250.

Extensions

a(11)-a(14) from Alois P. Heinz, Dec 28 2011
a(15)-a(17) from Fausto A. C. Cariboni, Feb 22 2017
a(18)-a(19) from Martin Fuller, Jul 08 2025

A337520 Number of set partitions of [4n] into 4-element subsets {i, i+k, i+2k, i+3k} with 1<=k<=n.

Original entry on oeis.org

1, 1, 2, 4, 10, 22, 64, 147, 409, 1092, 3253, 8661, 28585, 83190, 274001, 912373, 3366384, 13253582, 61533277, 290493694
Offset: 0

Views

Author

Alois P. Heinz, Nov 18 2020

Keywords

Examples

			a(4) = 10: {{1,2,3,4}, {5,6,7,8}, {9,10,11,12}, {13,14,15,16}},
  {{1,3,5,7}, {2,4,6,8}, {9,10,11,12}, {13,14,15,16}},
  {{1,2,3,4}, {5,7,9,11}, {6,8,10,12}, {13,14,15,16}},
  {{1,4,7,10}, {2,5,8,11}, {3,6,9,12}, {13,14,15,16}},
  {{1,2,3,4}, {5,6,7,8}, {9,11,13,15}, {10,12,14,16}},
  {{1,3,5,7}, {2,4,6,8}, {9,11,13,15}, {10,12,14,16}},
  {{2,4,6,8}, {1,5,9,13}, {3,7,11,15}, {10,12,14,16}},
  {{1,2,3,4}, {5,8,11,14}, {6,9,12,15}, {7,10,13,16}},
  {{1,3,5,7}, {2,6,10,14}, {9,11,13,15}, {4,8,12,16}},
  {{1,5,9,13}, {2,6,10,14}, {3,7,11,15}, {4,8,12,16}}.
		

Crossrefs

Main diagonal of A360333.

Programs

  • Maple
    b:= proc(s, t) option remember; `if`(s={}, 1, (m-> add(
         `if`({seq(m-h*j, h=1..3)} minus s={}, b(s minus {seq(m-h*j,
          h=0..3)}, t), 0), j=1..min(t, iquo(m-1, 3))))(max(s)))
        end:
    a:= proc(n) option remember; forget(b): b({$1..4*n}, n) end:
    seq(a(n), n=0..12);
  • Mathematica
    b[s_, t_] := b[s, t] = If[s == {}, 1, Function[m, Sum[       If[Union@Table[m-h*j, {h, 1, 3}] ~Complement~ s == {}, b[s ~Complement~ Union@Table[m-h*j, {h, 0, 3}], t], 0], {j, 1, Min[t, Quotient[m-1, 3]]}]][Max[s]]];
    a[n_] := a[n] = b[Range[4n], n];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 12}] (* Jean-François Alcover, Feb 13 2023, after Alois P. Heinz *)

A360334 Array read by antidiagonals downwards: A(n,m) = number of set partitions of [3n] into 3-element subsets {i, i+k, i+2k} with 1 <= k <= m.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 5, 7, 8, 1, 1, 2, 5, 12, 13, 13, 1, 1, 2, 5, 15, 25, 24, 21, 1, 1, 2, 5, 15, 35, 56, 44, 34, 1, 1, 2, 5, 15, 46, 84, 126, 81, 55, 1, 1, 2, 5, 15, 55, 129, 211, 281, 149, 89, 1, 1, 2, 5, 15, 55, 185, 346, 537, 625, 274, 144, 1
Offset: 1

Views

Author

Peter Dolland, Feb 03 2023

Keywords

Examples

			Square array begins:
  1,  1,   1,   1,    1,    1,    1,     1,     1, ...
  1,  2,   2,   2,    2,    2,    2,     2,     2, ...
  1,  3,   4,   5,    5,    5,    5,     5,     5, ...
  1,  5,   7,  12,   15,   15,   15,    15,    15, ...
  1,  8,  13,  25,   35,   46,   55,    55,    55, ...
  1, 13,  24,  56,   84,  129,  185,   232,   232, ...
  1, 21,  44, 126,  211,  346,  567,   831,  1040, ...
  1, 34,  81, 281,  537,  973, 1781,  2920,  4242, ...
  1, 55, 149, 625, 1352, 2732, 5643, 10213, 16110, ...
  ...
		

Crossrefs

Main diagonal is A334250.
Columns 1..3 are A000012, A000045(n+1), A000073(n+2).

Formula

A(n,m) = A104429(n) = A104443(n,3) for m >= floor((3n - 1) / 2).
Showing 1-3 of 3 results.