A360665 Square array T(n, k) = k*((2*n-1)*k+1)/2 read by rising antidiagonals.
0, 0, 0, 0, 1, -1, 0, 2, 3, -3, 0, 3, 7, 6, -6, 0, 4, 11, 15, 10, -10, 0, 5, 15, 24, 26, 15, -15, 0, 6, 19, 33, 42, 40, 21, -21, 0, 7, 23, 42, 58, 65, 57, 28, -28, 0, 8, 27, 51, 74, 90, 93, 77, 36, -36, 0, 9, 31, 60, 90, 115, 129, 126, 100, 45, -45
Offset: 0
Examples
By rows: 0, 0, -1, -3, -6, -10, -15, -21, -28, ... = -A161680 0, 1, 3, 6, 10, 15, 21, 28, 36, ... = A000217 0, 2, 7, 15, 26, 40, 57, 77, 100, ... = A005449 0, 3, 11, 24, 42, 65, 93, 126, 164, ... = A005475 0, 4, 15, 33, 58, 90, 129, 175, 228, ... = A022265 0, 5, 19, 42, 74, 115, 165, 224, 292, ... = A022267 0, 6, 23, 51, 90, 140, 201, 273, 356, ... = A022269 ... .
Crossrefs
Programs
-
Mathematica
T[n_, k_] := ((2*n - 1)*k^2 + k)/2; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 31 2023 *)
-
PARI
T(n, k) = ((2*n-1)*k^2+k)/2 \\ Thomas Scheuerle, Mar 17 2023