cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A361098 Intersection of A360765 and A360768.

Original entry on oeis.org

36, 48, 50, 54, 72, 75, 80, 96, 98, 100, 108, 112, 135, 144, 147, 160, 162, 189, 192, 196, 200, 216, 224, 225, 240, 242, 245, 250, 252, 270, 288, 294, 300, 320, 324, 336, 338, 350, 352, 360, 363, 375, 378, 384, 392, 396, 400, 405, 416, 432, 441, 448, 450, 468, 480, 484, 486, 490, 500, 504, 507, 525
Offset: 1

Views

Author

Michael De Vlieger, Mar 15 2023

Keywords

Comments

Numbers k that are neither prime powers nor squarefree, such that rad(k) * A053669(k) < k and k/rad(k) >= A119288(k), where rad(k) = A007947(k).
Numbers k such that A360480(k), A360543(k), A361235(k), and A355432(k) are positive.
Subset of A126706. All terms are neither prime powers nor squarefree.
From Michael De Vlieger, Aug 03 2023: (Start)
Superset of A286708 = A001694 \ {{1} U A246547}, which in turn is a superset of A303606. We may write k in A286708 as m*rad(k)^2, m >= 1. Since omega(k) > 1, it is clear both k/rad(k) > A053669(k) and k/rad(k) >= A119288(k). Also superset of A359280 = A286708 \ A303606.
This sequence contains {A002182 \ A168263}. (End)

Examples

			For prime p, A360480(p) = A360543(p) = A361235(p) = A355432(p) = 0, since k < p is coprime to p.
For prime power n = p^e > 4, e > 0, A360543(n) = p^(e-1) - e, but A360480(n) = A361235(n) = A355432(n) = 0, since the other sequences require omega(n) > 1.
For squarefree composite n, A360480(n) >= 1 and A361235(n) >= 1 (the latter for n > 6), but A360543(n) = A355432(n) = 0, since the other sequences require at least 1 prime power factor p^e | n with e > 0.
For n = 18, A360480(n) = | {10, 14, 15} | = 3,
            A360543(n) = | {} | = 0,
            A361235(n) = | {4, 8, 16} | = 3,
            A355432(n) = | {12} | = 1.
Therefore 18 is not in the sequence.
For n = 36, A360480(n) = | {10, 14, 15, 20, 21, 22, 26, 28, 33, 34} | = 10,
            A360543(n) = | {30} | = 1,
            A361235(n) = | {8, 16, 27, 32} | = 4,
            A355432(n) = | {24} | = 1.
Therefore 36 is the smallest term in the sequence.
Table pertaining to the first 12 terms:
Key: a = A360480, b = A360543, c = A243823; d = A361235, e = A355432, f = A243822;
g = A046753 = f + c, tau = A000005, phi = A000010.
    n |  a + b =  c | d + e = f | g + tau + phi - 1 =  n
  ------------------------------------------------------
   36 | 10 + 1 = 11 | 4 + 1 = 5 | 16 +  9 + 12 - 1 =  36
   48 | 16 + 2 = 18 | 3 + 2 = 5 | 23 + 10 + 16 - 1 =  48
   50 | 18 + 1 = 19 | 4 + 2 = 6 | 25 +  6 + 20 - 1 =  50
   54 | 19 + 2 = 21 | 4 + 4 = 8 | 29 +  8 + 18 - 1 =  54
   72 | 27 + 4 = 31 | 4 + 2 = 6 | 37 + 12 + 24 - 1 =  72
   75 | 25 + 2 = 27 | 2 + 1 = 3 | 30 +  6 + 40 - 1 =  75
   80 | 32 + 3 = 35 | 3 + 1 = 4 | 39 + 10 + 32 - 1 =  80
   96 | 38 + 7 = 45 | 4 + 4 = 8 | 53 + 12 + 32 - 1 =  96
   98 | 41 + 3 = 44 | 5 + 2 = 7 | 51 +  6 + 42 - 1 =  98
  100 | 42 + 4 = 46 | 4 + 2 = 6 | 52 +  9 + 40 - 1 = 100
  108 | 44 + 8 = 52 | 5 + 4 = 9 | 61 + 12 + 36 - 1 = 108
  112 | 48 + 3 = 51 | 3 + 1 = 4 | 55 + 10 + 48 - 1 = 112
		

Crossrefs

Programs

  • Mathematica
    nn = 2^16;
    a053669[n_] := If[OddQ[n], 2, p = 2; While[Divisible[n, p], p = NextPrime[p]]; p];
    s = Select[Range[nn], Nor[PrimePowerQ[#], SquareFreeQ[#]] &];
    Reap[ Do[n = s[[j]];
        If[And[#1*a053669[n] < n, n/#1 >= #2] & @@ {Times @@ #, #[[2]]} &@
          FactorInteger[n][[All, 1]], Sow[n]], {j, Length[s]}]][[-1, -1]]

A364997 Numbers k neither squarefree nor prime power such that rad(k)*A119288(k) > k but rad(k)*A053669(k) < k.

Original entry on oeis.org

40, 45, 56, 63, 88, 99, 104, 117, 136, 152, 153, 171, 175, 176, 184, 207, 208, 232, 248, 261, 272, 275, 279, 280, 296, 297, 304, 315, 325, 328, 333, 344, 351, 368, 369, 376, 387, 423, 424, 425, 440, 459, 464, 472, 475, 477, 488, 495, 496, 513, 520, 531, 536, 539
Offset: 1

Views

Author

Michael De Vlieger, Aug 16 2023

Keywords

Comments

Subset of A126706, numbers that are neither squarefree nor prime powers.
For k in this sequence, let p = A119288(k), q = A053669(k), and r = A007947(k).
A355432(k) = 0, A360543(k) > 0. There exist m < k, gcd(m,k) > 1 such that both omega(k) > omega(m) and rad(m) | k, but nondivisors m < k do not exist such that rad(m) = rad(k).

Examples

			Let b(n) = A126706(n), S = A360767, and T = A360765.
b(1) = 12 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6 = 30; both exceed 12, thus 12 is in S but not in T.
b(2) = 18 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6 = 30. Indeed, neither is less than 18, hence 18 is not in S but is in T.
b(6) = 36 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6, and both do not exceed 36, therefore 36 is not in S but is in T.
b(7) = a(1) = 40 since p*r = 5*10 = 50 and q*r = 3*10 = 30. We have both 50 > 40 and 30 < 40, thus 40 is in both S and T, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[500], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], Function[{k, f}, Function[{p, q, r}, And[p r > k, q r < k]] @@ {f[[2, 1]], SelectFirst[Prime@ Range[PrimePi[f[[-1, 1]]] + 1], ! Divisible[k, #] &], Times @@ f[[All, 1]]}] @@ {#, FactorInteger[#]} &]

Formula

Intersection of A360765 and A360767.

A360543 a(n) = number of numbers k < n, gcd(k, n) > 1, such that omega(k) > omega(n) and rad(n) | rad(k), where omega(n) = A001221(n) and rad(n) = A007947(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 6, 0, 0, 0, 0, 11, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 5, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 26, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 0, 3, 23, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 7, 0, 3, 1, 4
Offset: 1

Views

Author

Michael De Vlieger, Mar 06 2023

Keywords

Examples

			a(4) = 0 since k = 1..3 are prime powers.
a(8) = 1 since only k = 6 is such that p = 3, q = 5, but gcd(6, 10) = 2.
a(9) = 1 since the following satisfies definition: {6},
a(16) = 4, i.e., {6, 10, 12, 14},
a(25) = 3, i.e., {10, 15, 20},
a(27) = 6, i.e., {6, 12, 15, 18, 21, 24},
a(32) = 11, i.e., {6, 10, 12, 14, 18, 20, 22, 24, 26, 28, 30},
a(36) = 1, i.e., {30},
a(40) = 1, i.e., {30},
a(45) = 1, i.e., {30}, etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 120; rad[n_] := rad[n] = Times @@ FactorInteger[n][[All, 1]]; c = Select[Range[4, nn], CompositeQ]; Table[Function[{q, r}, Count[TakeWhile[c, # <= n &], _?(And[PrimeNu[#] > q, Divisible[rad[#], r]] &)]] @@ {PrimeNu[n], rad[n]}, {n, nn}]

Formula

a(n) = A243823(n) - A360480(n).
a(n) = A045763(n) - A243822(n) - A360480(n).
a(n) = A051953(n) - A000005(n) - A243822(n) - A360480(n).
a(n) = A051953(n) - A010846(n) - A360480(n).
a(n) = A243823(n) = A045763(n) for n in A246547.
For prime power n = p^e, n > 1, a(n) = p^(e-1) - e.
For n in A360765, a(n) > 0.

A363082 Numbers k neither squarefree nor prime power such that q*r > k, where q = A053669(k) is the smallest prime that does not divide k and r = A007947(k) is the squarefree kernel.

Original entry on oeis.org

12, 18, 20, 24, 28, 44, 52, 60, 68, 76, 84, 90, 92, 116, 120, 124, 126, 132, 140, 148, 150, 156, 164, 168, 172, 180, 188, 198, 204, 212, 220, 228, 234, 236, 244, 260, 264, 268, 276, 284, 292, 306, 308, 312, 316, 332, 340, 342, 348, 356, 364, 372, 380, 388, 404, 408, 412, 414, 420
Offset: 1

Views

Author

Michael De Vlieger, Jul 29 2023

Keywords

Examples

			a(1) = 12 since 12 is the smallest number that is neither squarefree nor a prime power. Additionally, 12 < 5*6.
a(2) = 18 since it is in A126706, and like 12, 18 < 5*6.
a(3) = 20 since it is neither squarefree nor prime power, and 20 < 3*10.
36 is not in this sequence since 36 > 5*6.
40 is not in this sequence since 40 > 3*10, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[452], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], Function[{k, f}, Function[{q, r}, q r > k] @@ {SelectFirst[Prime@ Range[PrimePi[f[[-1, 1]]] + 1], ! Divisible[k, #] &], Times @@ f[[All, 1]]} ] @@ {#, FactorInteger[#]} &]

Formula

This sequence is A126706 \ A360765.

A369954 Numbers k that are neither squarefree nor prime powers and also coprime to 6.

Original entry on oeis.org

175, 245, 275, 325, 425, 475, 539, 575, 605, 637, 725, 775, 833, 845, 847, 875, 925, 931, 1025, 1075, 1127, 1175, 1183, 1225, 1325, 1375, 1421, 1445, 1475, 1519, 1525, 1573, 1625, 1675, 1715, 1775, 1805, 1813, 1825, 1859, 1925, 1975, 2009, 2023, 2057, 2075, 2107
Offset: 1

Views

Author

Michael De Vlieger, Mar 24 2024

Keywords

Comments

Define quality Q to signify a number k neither squarefree nor prime power, i.e., k is in A126706. For example, 12 has quality Q but numbers k = 1..11 do not.
Numbers k in this sequence have quality Q and are such that either (k-1) or (k+1) also have quality Q. Hence k also appears in A369276, but not in A369516.
Numbers k such that k mod 12 = 1 or k mod 12 = 5 imply (k-1) in A126706, since 4 divides (k-1).
Numbers k such that k mod 12 = 7 or k mod 12 = 11 imply (k+1) in A126706, since 4 divides (k+1).
Proper subset of A367455.
By definition these odd numbers are such that A053669(k) = 2, therefore A053669(k) < A003557(k), hence this sequence is a proper subset of A360765.

Crossrefs

Programs

  • Mathematica
    Select[Flatten[Array[6 # + {1, 5} &, 360]], Nor[PrimePowerQ[#], SquareFreeQ[#]] &]
  • PARI
    isok(k) = !issquarefree(k) && !isprimepower(k) && (gcd(k, 6)==1); \\ Michel Marcus, Mar 25 2024

Formula

Intersection of A007310 and A126706.
Intersection of A007310, A013929, and A024619.

A372972 Numbers k such that A372720(k) is negative.

Original entry on oeis.org

162, 250, 324, 384, 486, 648, 686, 768, 972, 1152, 1250, 1296, 1372, 1458, 1536, 1728, 1875, 1944, 2058, 2250, 2304, 2430, 2500, 2560, 2592, 2662, 2738, 2916, 3000, 3072, 3362, 3402, 3456, 3698, 3750, 3840, 3888, 3993, 4050, 4116, 4374, 4394, 4418, 4500, 4608
Offset: 1

Views

Author

Michael De Vlieger, Jun 02 2024

Keywords

Comments

Let tau = A000005, let omega = A001221, let f = A008479, and let g = A372720.
For squarefree k, A372720(k) >= 0, since A008479(k) = 1 while tau(k) = 2^omega(k).
For prime power p^m, A372720(p^m) = 1, since A008479(p^m) = m while tau(k) = m+1.
Therefore, apart from a(1) = 1, this sequence is a proper subset of A126706.
In the sequence R = {k = m*s : rad(m) | s, s > 1 in A120944}, there is a smallest term k such that g(k) <= 0 and a largest term k such that g(k) is positive. For instance, in A033845 where s = 6, only {6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 192, 216, 288, 432, 576, 864} are such that g(k) > 0.
For s > 1, an infinite number of k in R are such that g(k) is negative. For example, with s = 6, all terms k > 864 in A033845 are in this sequence.
Conjecture: proper subset of A361098, hence of A360765 and A360768. This is to say that k = a(n) is such that A003557(k) >= A119288(k), i.e., k/rad(k) >= second smallest prime factor of k, and A003557(k) > A053669(k), where A053669(k) is the smallest prime q that does not divide k.

Examples

			a(1) = 162 = 2*3^4, since tau(162) - f(162)
     = (1+1)*(4+1) - card(A369609(162))
     = 10 - 12 = -2.
a(2) = 250 = 2*5^3, since tau(250) - f(250)
     = (1+1)*(3+1) - card(A369609(250))
     = 8 - 9 = -1.
a(3) = 324 = 2^2*3^4, since tau(324) - f(324)
     = (2+1)*(4+1) - card(A369609(324))
     = 15 - 16 = -1, etc.
		

Crossrefs

Programs

A372864 Numbers k such that A372720(k) = 0.

Original entry on oeis.org

1, 500, 578, 722, 750, 1058, 1500, 1682, 1922, 2646, 2744, 3430, 3645, 4800, 5202, 5346, 5476, 5488, 5625, 6318, 6400, 6724, 7168, 7396, 8000, 8836, 10092, 10976, 11236, 11532, 11979, 12005, 13068, 13924, 14450, 14884, 15309, 16810, 16875, 16896, 18050, 18225
Offset: 1

Views

Author

Michael De Vlieger, Jun 02 2024

Keywords

Comments

Let tau = A000005, let omega = A001221, let f = A008479, and let g = A372720.
For squarefree k, A372720(k) >= 0, since f(k) = 1 while tau(k) = 2^omega(k).
For prime power p^m, A372720(p^m) = 1, since f(p^m) = m while tau(k) = m+1.
Therefore, apart from a(1) = 1, this sequence is a proper subset of A126706.
In the sequence R = {k = m*s : rad(m) | s, s > 1 in A120944}, there is a smallest term k such that g(k) <= 0 and a largest term k such that g(k) is positive. For instance, in A033845 where s = 6, only {6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 192, 216, 288, 432, 576, 864} are such that g(k) > 0.
Apart from terms in this sequence, all the rest of the terms k in R are such that g(k) is negative.
There are no 3-smooth numbers k > 1 in this sequence, however there are 3 terms {500, 6400, 8000} in A033846 (with s = rad(k) = 10). For s = 2*3*23, there are 6 terms {19044, 25392, 38088, 70656, 536544, 953856}.
Conjecture: proper subset of A361098, hence of A360765 and A360768. This is to say that k = a(n) is such that A003557(k) >= A119288(k), i.e., k/rad(k) >= second smallest prime factor of k, and A003557(k) > A053669(k), where A053669(k) is the smallest prime q that does not divide k.

Examples

			a(1) = 1 since tau(1) - f(1) = 1 - 1 = 0.
a(2) = 500 = 2^2 * 5*3, since tau(500) - f(500)
     = (2+1)*(3+1) - card({10,20,40,50,80,100,160,200,250,320,400,500})
     = 12 - 12 = 0.
a(3) = 578 = 2*17^2, since tau(578) - f(578)
     = (1+1)*(2+1) - card({34,68,136,272,544,578})
     = 6 - 6 = 0, etc.
		

Crossrefs

Programs

Showing 1-7 of 7 results.