A360671 Number of multisets whose right half (inclusive) sums to n.
1, 2, 5, 8, 16, 21, 42, 51, 90, 121, 185, 235, 386, 465, 679, 908, 1261, 1580, 2238, 2770, 3827, 4831, 6314, 7910, 10619, 13074, 16813, 21049, 26934, 33072, 42445, 51679, 65264, 79902, 99309, 121548, 151325, 182697, 224873, 272625, 334536, 401999, 491560, 588723
Offset: 0
Keywords
Examples
The a(0) = 1 through a(4) = 16 multisets: {} {1} {2} {3} {4} {1,1} {1,2} {1,3} {1,4} {2,2} {2,3} {2,4} {1,1,1} {3,3} {3,4} {1,1,1,1} {1,1,2} {4,4} {1,1,1,2} {1,1,3} {1,1,1,1,1} {1,2,2} {1,1,1,1,1,1} {2,2,2} {1,1,1,3} {1,1,2,2} {1,2,2,2} {2,2,2,2} {1,1,1,1,2} {1,1,1,1,1,2} {1,1,1,1,1,1,1} {1,1,1,1,1,1,1,1} For example, the multiset y = {1,1,1,1,2} has right half (inclusive) {1,1,2}, with sum 4, so y is counted under a(4).
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Join@@IntegerPartitions/@Range[0,3*k], Total[Take[#,Ceiling[Length[#]/2]]]==k&]],{k,0,15}]
-
PARI
seq(n)={my(s=1 + O(x*x^n), p=s); for(k=1, n, s += p*x^k*(2-x^k)/(1-x^k + O(x*x^(n-k)))^(k+1); p /= 1 - x^k); Vec(s)} \\ Andrew Howroyd, Mar 11 2023
Formula
G.f.: 1 + Sum_{k>=1} x^k*(2 - x^k)/((1 - x^k)^(k+1) * Product_{j=1..k-1} (1-x^j)). - Andrew Howroyd, Mar 11 2023
Extensions
Terms a(24) and beyond from Andrew Howroyd, Mar 11 2023