A360966 a(n) = denominator of (Zeta(2*n+1,1/4) - Zeta(2*n+1,3/4))/Pi^(2*n+1) where Zeta is the Hurwitz zeta function.
1, 1, 3, 45, 63, 14175, 93555, 42567525, 127702575, 97692469875, 371231385525, 2143861251406875, 2275791174570375, 48076088562799171875, 95646113035463615625, 3952575621190533915703125, 1441527579493018251609375, 68739242628124575327993046875, 333120945043988326589504765625
Offset: 0
Examples
a(0) = 1 because lim_{n->0} (Zeta(2*n+1,1/4) - Zeta(2*n+1,3/4))/Pi^(2*n+1) = 1. a(3) = 45 because (Zeta(2*3+1,1/4) - Zeta(2*3+1,3/4))/Pi^(2*3+1) = 244/45.
Links
- Wikipedia, Hurwitz zeta function
Crossrefs
Programs
-
Mathematica
Table[(Zeta[2*n + 1, 1/4] - Zeta[2*n + 1, 3/4]) / Pi^(2*n + 1), {n, 0, 25}] // FunctionExpand // Denominator (* Second program: *) a[n_] := SeriesCoefficient[Tan[x + Pi/4], {x, 0, 2n}] // Denominator; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 16 2023 *)
-
PARI
a(n) = denominator(abs(eulerfrac(2*n))*(2*n + 1)*2^(2*n)/(2*n + 1)!); \\ Michel Marcus, Apr 11 2023
Comments