A360984 Triangular array read by rows. T(n,k) is the number of idempotent Boolean relation matrices on [n] with exactly k reflexive points, n >= 0, 0 <= k <= n.
1, 1, 1, 1, 6, 4, 1, 27, 66, 29, 1, 108, 780, 1116, 355, 1, 405, 8020, 29250, 28405, 6942, 1, 1458, 76110, 649260, 1460425, 1068576, 209527
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1, 1; 1, 6, 4; 1, 27, 66, 29; 1, 108, 780, 1116, 355; 1, 405, 8020, 29250, 28405, 6942; ...
Formula
T(n,n-1) = A245767(n,n-1).
T(n,1) = n*Sum_k Sum_j binomial(n-1,k)*binomial(n-1-k,j) = A027471(n+1).
E.g.f. for column 1 is x*exp(x)^3.
E.g.f. for column 2 is x^2/2*exp(x)^3 + x^2*exp(x)^6 + x^2/2*exp(x)^7.
E.g.f. for column 3 is x^3/3!*exp(x)^15 + x^3/3!*exp(x)^3 + x^3*exp(x)^10 + x^3*exp(x)^12 + x^3/2!*exp(x)^7 + 2*x^3/2!*exp(x)^6 + 2*x^3/2*exp(x)^12.
Extensions
Rows 5 and 6 added by Geoffrey Critzer, Mar 05 2023