cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A361030 a(n) = 20160*(3*n)!/(n!*(n+3)!^2).

Original entry on oeis.org

560, 210, 504, 2352, 15840, 135135, 1361360, 15519504, 194699232, 2636552100, 38003792400, 577037174400, 9155656500480, 150853746558690, 2568167588473200, 44990491457326800, 808333317429976800, 14853124707775823700, 278470827854627007600, 5316261259042879236000
Offset: 0

Views

Author

Peter Bala, Mar 01 2023

Keywords

Comments

Row 2 of square array A361027.
The central binomial numbers A000984(n) = (2*n)!/n!^2 have the property that 60*A000984(n) is divisible by (n + 1)*(n + 2)*(n + 3) and the result 60*(2*n)!/(n!*(n+3)!) is the super ballot number A007272(n). Similarly, the de Bruijn numbers A006480(n) = (3*n)!/n!^3 have the property that 20160*A006480(n) is divisible by ((n + 1)*(n + 2)*(n + 3))^2.
Equivalently, the central binomial numbers A000984(n) = (2*n)!/n!^2 have the property that (1*3*5)*A000984(n+3) is divisible by (2*n + 1)*(2*n + 3)*(2*n + 5). The result is always an even integer. In fact, (1/2)*(1*3*5)/((2*n + 1)*(2n + 3)*(2n + 5))*A000984(n+3) = A007272(n).
Similarly, the de Bruijn numbers A006480(n) = (3*n)!/n!^3 have the property that (1*2*4*5*7*8)*A006480(n+3) is divisible by (3*n + 1)*(3*n + 2)*(3*n + 4)*(3*n + 5)*(3*n + 7)*(3*n + 8). The result is always an integer divisible by 3.

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n = 0 then 560 else 3*(3*n-1)*(3*n-2)/(n+3)^2*a(n-1) end if; end proc:
    seq(a(n), n = 0..20);

Formula

a(n) = 20160/((n+1)*(n+2)*(n+3))^2 * (3*n)!/n!^3.
a(n) = (1/3)*(1*2*4*5*7*8) * A006480(n+3)/((3*n + 1)*(3*n + 2)*(3*n + 4)*
(3*n + 5)*(3*n + 7)*(3*n + 8)), where A006480(n) = (3*n)!/n!^3.
a(n) = (1/5)*A007272(n)*A361038(n). Using this it can be shown that a(n) is always an integer.
a(n) = (1/3)*27^(n+3)*binomial(7/3, n+3)*binomial(8/3, n+3).
a(n) ~ sqrt(3)*10080*(27^n)/(Pi*n^7).
P-recursive: (n + 3)^2*a(n) = 3*(3*n - 1)*(3*n - 2)*a(n-1) with a(0) = 560.
The o.g.f. A(x) satisfies the differential equation x^2*(1 - 27*x)*A''(x) + x*(7 - 54*x)*A'(x) + (9 - 6*x)*A(x) - 5040 = 0, with A(0) = 560 and A'(0) = 210.

A361039 a(n) = 55440 * (3*n)!/((2*n)!*(n+4)!).

Original entry on oeis.org

2310, 1386, 2310, 5544, 16335, 55055, 204204, 813960, 3432198, 15142050, 69334650, 327523680, 1588667850, 7883530578, 39904290580, 205532444040, 1075067283906, 5701114384350, 30608320603770, 166169731127400, 911270544740325
Offset: 0

Views

Author

Peter Bala, Mar 04 2023

Keywords

Comments

Compare with the super ballot numbers A348893(n) = 840*(2*n)!/(n!*(n+4)!).

Crossrefs

Programs

  • Maple
    seq(  55440 * (3*n)!/((2*n)!*(n+4)!), n = 0..20);

Formula

a(n) = 2310*binomial(3*n,n) - 2057*binomial(3*n,n+1) + 627*binomial(3*n,n+2) - 102*binomial(3*n,n+3) + 7*binomial(3*n, n+4). Thus a(n) is an integer.
P-recursive: 2*(n + 4)*(2*n - 1) = 3*(3*n - 1)*(3*n - 2)*a(n-1) with a(0) = 2310.
a(n) ~ (27/4)^n * 27720*sqrt(3/Pi)/n^(9/2).
The o.g.f. satisfies the differential equation
x^2*(27*x - 4)*A''(x) + 2*x*(27*x - 9)*A'(x) + (6*x + 8)*A(x) - 18480 = 0, with A(0) = 2310 and A'(0) = 1386.

A361037 a(n) = 20*(3*n)!/((2*n)!*(n+2)!).

Original entry on oeis.org

10, 10, 25, 84, 330, 1430, 6630, 32300, 163438, 852150, 4552275, 24812400, 137547000, 773564328, 4405019090, 25357898940, 147375745990, 863805209750, 5101386767295, 30332569967700, 181465130121450, 1091677288630950
Offset: 0

Views

Author

Peter Bala, Mar 04 2023

Keywords

Comments

Gessel (1992) introduced sequences {b(r,n): n >= 0} of super ballot numbers defined by b(r,n) = J(r) * (2*n)!/(n!*(n + r + 1)!), r = 0,1,2,..., where J(r) = (2*r + 2)!/(2*(r + 1)!) = (2^r)*Product_{j = 0..r} (2*j + 1) is chosen so that these numbers are always integers. The sequence {b(1,n) : n >= 0} is A000108, the sequence of Catalan numbers. See A135573 for a table of these generalized Catalan numbers.
We carry out an analogous construction using the numbers B(n) = A005809(n) = binomial(3*n,n) = (3*n)!/((2*n)!*n!) in place of the central binomial numbers. We define B(r,n), r = 0,1,2, ..., by B(r,n) = F(r) * (3*n)!/((2*n)!*(n + r + 1)!), where F(r) is the minimal choice to produce integer values for these quantities for all n. This sequence is the case r = 1. See A007226 (r = 0), A361038 (r = 2) and A361039 (r = 3).

Crossrefs

Programs

  • Maple
    seq( 20*(3*n)!/((2*n)!*(n+2)!), n = 0..20);
  • Mathematica
    Table[20 (3n)!/((2n)!(n+2)!),{n,0,30}] (* Harvey P. Dale, Aug 05 2024 *)

Formula

a(n) = 10*binomial(3*n,n) - 7*binomial(3*n,n+1) + binomial(3*n,n+2). Thus a(n) is an integer.
P-recursive: 2*(n + 2)(2*n - 1)*a(n) = 3*(3*n - 1)*(3*n - 2)*a(n-1) with a(0) = 10.
a(n) ~ (27/4)^n * 10*sqrt(3/Pi)/n^(5/2).
The o.g.f. satisfies the differential equation
x^2*(27*x - 4)*A''(x) + 2*x*(27*x - 5)*A'(x) + 2*(3*x + 2)*A(x) - 40 = 0, with A(0) = 10 and A'(0) = 10.

A361040 a(n) = 420*(3*n)!/(n!*(2*n + 3)!).

Original entry on oeis.org

70, 21, 30, 70, 210, 735, 2856, 11970, 53130, 246675, 1187550, 5890248, 29954680, 155602020, 823184880, 4424618730, 24116031162, 133072694475, 742405558650, 4182821562150, 23776769743650, 136248095712855, 786482994679200
Offset: 0

Views

Author

Peter Bala, Mar 04 2023

Keywords

Comments

The Catalan numbers A000108 are defined by the formula Catalan(n) = (2*n)!/(n!*(n+1)!). Gessel (1992) considered generalized Catalan numbers defined by Catalan(r,n) = J(r)*(2*n)!/(n!*(n+r+1)!), where J(r) = (2^r)*Product_{j = 0..r} (2*j + 1) is chosen so that these numbers are always integers. Gessel's generalized Catalan numbers are particular cases of super ballot numbers. See A135573 for a table of these generalized Catalan numbers.
For r = 0,1,2,..., it appears that there is an integer C(r) such the sequence {C(r)*(3*n)!/(n!*(2*n + r)!) : n >= 0} is integral. This is the case r = 3. For other cases see A005809 (r = 0, C(0) = 1), A001764 (r = 1, C(1) = 1), A000139 (r = 2, C(2) = 4) and A361041 (r = 4, C(4) = 1680).

Crossrefs

Programs

  • Maple
    seq( 420*(3*n)!/(n!*(2*n + 3)!), n = 0..20)

Formula

a(n) = 70*binomial(3*n,2*n) - 189*binomial(3*n,2*n+1) + 114*binomial(3*n,2*n+2) -32*binomial(3*n,2*n+3). Thus a(n) is an integer.
P-recursive: 2*(n + 1)*(2*n + 3)*a(n) = 3*(3*n - 1)*(3*n - 2)*a(n-1) with a(0) = 70.
a(n) ~ (27/4)^n * 105*sqrt(3/(16*Pi))/n^(7/2).
The o.g.f. A(x) satisfies the differential equation
x^2*(4 - 27*x^4)*A''(x) + 2*x*(7 - 27*x)*A'(x) + (6 - 6*x)*A(x) - 420 = 0, with A(0) = 70 and A'(0) = 21.
Showing 1-4 of 4 results.