A361030 a(n) = 20160*(3*n)!/(n!*(n+3)!^2).
560, 210, 504, 2352, 15840, 135135, 1361360, 15519504, 194699232, 2636552100, 38003792400, 577037174400, 9155656500480, 150853746558690, 2568167588473200, 44990491457326800, 808333317429976800, 14853124707775823700, 278470827854627007600, 5316261259042879236000
Offset: 0
Links
- Peter Bala, A361030 is an integer sequence
Programs
-
Maple
a := proc(n) option remember; if n = 0 then 560 else 3*(3*n-1)*(3*n-2)/(n+3)^2*a(n-1) end if; end proc: seq(a(n), n = 0..20);
Formula
a(n) = 20160/((n+1)*(n+2)*(n+3))^2 * (3*n)!/n!^3.
a(n) = (1/3)*(1*2*4*5*7*8) * A006480(n+3)/((3*n + 1)*(3*n + 2)*(3*n + 4)*
(3*n + 5)*(3*n + 7)*(3*n + 8)), where A006480(n) = (3*n)!/n!^3.
a(n) = (1/3)*27^(n+3)*binomial(7/3, n+3)*binomial(8/3, n+3).
a(n) ~ sqrt(3)*10080*(27^n)/(Pi*n^7).
P-recursive: (n + 3)^2*a(n) = 3*(3*n - 1)*(3*n - 2)*a(n-1) with a(0) = 560.
The o.g.f. A(x) satisfies the differential equation x^2*(1 - 27*x)*A''(x) + x*(7 - 54*x)*A'(x) + (9 - 6*x)*A(x) - 5040 = 0, with A(0) = 560 and A'(0) = 210.
Comments