cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A111907 Numbers k such that the same number of primes, among primes <= the largest prime dividing k, divide k as do not.

Original entry on oeis.org

1, 3, 9, 14, 21, 27, 28, 35, 56, 63, 78, 81, 98, 112, 130, 147, 156, 175, 182, 189, 195, 196, 224, 234, 243, 245, 260, 273, 286, 312, 364, 392, 429, 441, 448, 455, 468, 520, 567, 570, 572, 585, 624, 650, 686, 702, 715, 728, 729, 784, 798, 819, 875, 896, 936
Offset: 1

Views

Author

Leroy Quet, Aug 19 2005

Keywords

Comments

Also numbers whose greatest prime index (A061395) is twice their number of distinct prime factors (A001221). - Gus Wiseman, Mar 19 2023

Examples

			28 is included because 7 is the largest prime dividing 28. And of the primes <= 7 (2,3,5,7), 2 and 7 (2 primes) divide 28 and 3 and 5 (also 2 primes) do not divide 28.
From _Gus Wiseman_, Mar 19 2023: (Start)
The terms together with their prime indices begin:
    1: {}
    3: {2}
    9: {2,2}
   14: {1,4}
   21: {2,4}
   27: {2,2,2}
   28: {1,1,4}
   35: {3,4}
   56: {1,1,1,4}
   63: {2,2,4}
   78: {1,2,6}
   81: {2,2,2,2}
   98: {1,4,4}
  112: {1,1,1,1,4}
  130: {1,3,6}
  147: {2,4,4}
  156: {1,1,2,6}
For example, 156 is included because it has prime indices {1,1,2,6}, with distinct parts {1,2,6} and distinct non-parts {3,4,5}, both of length 3. Alternatively, 156 has greatest prime index 6 and omega 3, and 6 = 2*3.
(End)
		

Crossrefs

For length instead of maximum we have A067801.
These partitions are counted by A239959.
A001222 (bigomega) counts prime factors, distinct A001221 (omega).
A061395 gives greatest prime index.
A112798 lists prime indices, sum A056239.
Comparing twice the number of distinct parts to greatest part:
less: A360254, ranks A111906
equal: A239959, ranks A111907
greater: A237365, ranks A111905
less or equal: A237363, ranks A361204
greater or equal: A361394, ranks A361395

Programs

  • Mathematica
    Select[Range[100],2*PrimeNu[#]==PrimePi[FactorInteger[#][[-1,1]]]&] (* Gus Wiseman, Mar 19 2023 *)
  • PARI
    {m=950;v=vector(m);for(n=1,m,f=factor(n)[,1]~;c=0;pc=0;forprime(p=2,vecmax(f), j=1;s=length(f);while(j<=s&&p!=f[j],j++);if(j<=s,c++);pc++);v[n]=sign(pc-2*c)); for(n=1,m,if(v[n]==0,print1(n,",")))} \\ Klaus Brockhaus, Aug 21 2005
    
  • Python
    from itertools import count, islice
    from sympy import sieve, factorint
    def a_gen():
        yield 1
        for k in count(3):
            f = [sieve.search(i)[0] for i in factorint(k)]
            if 2*len(f) == f[-1]:
                yield k
    A111907_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Jun 20 2024

Extensions

More terms from Klaus Brockhaus, Aug 21 2005

A237363 Number of partitions of n for which 2*(number of distinct parts) <= (number of parts).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 6, 6, 10, 13, 20, 26, 39, 50, 71, 87, 121, 156, 208, 265, 348, 440, 566, 712, 906, 1131, 1424, 1766, 2224, 2738, 3390, 4168, 5130, 6266, 7664, 9312, 11332, 13723, 16603, 20004, 24112, 28942, 34708, 41522, 49612, 59031, 70308, 83479, 98992
Offset: 0

Views

Author

Clark Kimberling, Feb 06 2014

Keywords

Comments

a(n) + A237365(n) = A000041(n).
Also the number of integer partitions of n whose median difference is 0. For example, the partition (2,2,2,1,1) is counted because its multiset of differences {0,0,0,1} has median 0. - Gus Wiseman, Mar 18 2023

Examples

			Among the 22 partitions of 8, these qualify:  [5,1,1,1], [4,4], [4,1,1,1,1], [3,3,1,1], [3,1,1,1,1,1], [2,2,2,2], [2,2,2,1,1], [2,2,1,1,1,1], [2,1,1,1,1,1,1], [1,1,1,1,1,1,1,1], and the remaining 12 do not, so that a(8) = 10.
		

Crossrefs

These partitions have ranks A361204.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by number of parts, reverse A058398.
A116608 counts partitions by number of distinct parts.
A359893 and A359901 count partitions by median, odd-length A359902.
Comparing twice the number of distinct parts to the number of parts:
less: A360254, ranks A360558
equal: A239959, ranks A067801
greater: A237365, ranks A361393
less or equal: A237363, ranks A361204
greater or equal: A361394, ranks A361395

Programs

  • Mathematica
    z = 50; t = Map[Length[Select[IntegerPartitions[#], 2*Length[DeleteDuplicates[#]] <= Length[#] &]] &, Range[z]] (*A237363*)
    Table[PartitionsP[n] - t[[n]], {n, 1, z}] (*A237365*) (* Peter J. C. Moses, Feb 06 2014 *)
    Table[Length[Select[IntegerPartitions[n],Median[Differences[#]]==0&]],{n,0,30}] (* Gus Wiseman, Mar 18 2023 *)

A361205 a(n) = 2*omega(n) - bigomega(n).

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, -1, 0, 2, 1, 1, 1, 2, 2, -2, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, -1, 1, 1, 3, 1, -3, 2, 2, 2, 0, 1, 2, 2, 0, 1, 3, 1, 1, 1, 2, 1, -1, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 2, 1, 2, 1, -4, 2, 3, 1, 1, 2, 3, 1, -1, 1, 2, 1, 1, 2, 3, 1, -1, -2, 2, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 16 2023

Keywords

Crossrefs

Without doubling omega we have -A046660.
Positions of 0's are A067801, counted by A239959.
Positions of negative terms are A360558, counted by A360254.
Positions of nonpositive terms are A361204, counted by A237363.
Positions of positive terms are A361393, counted by A237365.
Positions of nonnegative terms are A361395, counted by A361394.
A001221 (omega) counts distinct prime factors.
A001222 (bigomega) counts prime factors.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    Table[2*PrimeNu[n]-PrimeOmega[n],{n,100}]

Formula

Additive with a(p^e) = 2 - e. - Amiram Eldar, Mar 26 2023
Sum_{k=1..n} a(k) = n * log(log(n)) + c * n + O(n/log(n)), where c = 2*A077761 - A083342 = A077761 - A136141 = -0.511659... . - Amiram Eldar, Oct 01 2023

A361395 Positive integers k such that 2*omega(k) >= bigomega(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74
Offset: 1

Views

Author

Gus Wiseman, Mar 16 2023

Keywords

Comments

Differs from A068938 in having 1 and 4 and lacking 80.
Includes all squarefree numbers.

Examples

			The prime indices of 80 are {1,1,1,1,3}, with 5 parts and 2 distinct parts, and 2*2 < 5, so 80 is not in the sequence.
		

Crossrefs

Complement of A360558.
Positions of nonnegative terms in A361205.
These partitions are counted by A361394.
A001222 (bigomega) counts prime factors, distinct A001221 (omega).
A112798 lists prime indices, sum A056239.
A360005 gives median of prime indices (times 2), distinct A360457.
Comparing twice the number of distinct parts to the number of parts:
less: A360254, ranks A360558
equal: A239959, ranks A067801
greater: A237365, ranks A361393
less or equal: A237363, ranks A361204
greater or equal: A361394, ranks A361395

Programs

  • Mathematica
    Select[Range[100],2*PrimeNu[#]>=PrimeOmega[#]&]

Formula

A001222(a(n)) <= 2*A001221(a(n)).

A361393 Positive integers k such that 2*omega(k) > bigomega(k).

Original entry on oeis.org

2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1

Views

Author

Gus Wiseman, Mar 16 2023

Keywords

Comments

First differs from A317090 in having 120 and lacking 360.
There are numbers like 1, 120, 168, 180, 252,... which are not in A179983 but in here, and others like 360, 504, 540, 600,... which are in A179983 but not in here. - R. J. Mathar, Mar 21 2023

Examples

			The terms together with their prime indices begin:
    2: {1}
    3: {2}
    5: {3}
    6: {1,2}
    7: {4}
   10: {1,3}
   11: {5}
   12: {1,1,2}
   13: {6}
   14: {1,4}
   15: {2,3}
   17: {7}
   18: {1,2,2}
   19: {8}
   20: {1,1,3}
The prime indices of 120 are {1,1,1,2,3}, with 3 distinct parts and 5 parts, and 2*3 > 5, so 120 is in the sequence.
The prime indices of 360 are {1,1,1,2,2,3}, with 3 distinct parts and 6 parts, and 2*3 is not greater than 6, so 360 is not in the sequence.
		

Crossrefs

These partitions are counted by A237365.
The complement is A361204.
A001221 (omega) counts distinct prime factors.
A001222 (bigomega) counts prime factors.
A112798 lists prime indices, sum A056239.
A326567/A326568 gives mean of prime indices.
A360005 gives median of prime indices (times 2), distinct A360457.
Comparing twice the number of distinct parts to the number of parts:
less: A360254, ranks A360558
equal: A239959, ranks A067801
greater: A237365, ranks A361393
less or equal: A237363, ranks A361204
greater or equal: A361394, ranks A361395

Programs

  • Maple
    isA361393 := proc(n)
        if 2*A001221(n) > numtheory[bigomega](n) then
            true;
        else
            false ;
        end if:
    end proc:
    for n from 1 to 100 do
        if isA361393(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Mar 21 2023
  • Mathematica
    Select[Range[1000],2*PrimeNu[#]>PrimeOmega[#]&]

Formula

{k: 2*A001221(k) > A001222(k)}. - R. J. Mathar, Mar 21 2023

A385574 Number of integer partitions of n with the same number of adjacent equal parts as adjacent unequal parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 4, 5, 6, 10, 11, 13, 17, 20, 30, 36, 44, 55, 70, 86, 98, 128, 156, 190, 235, 288, 351, 409, 499, 603, 722, 863, 1025, 1227, 1461, 1757, 2061, 2444, 2892, 3406, 3996, 4708, 5497, 6430, 7595, 8835, 10294, 12027, 13971, 16252, 18887, 21878
Offset: 0

Views

Author

Gus Wiseman, Jul 04 2025

Keywords

Comments

These are also integer partitions of n with the same number of distinct parts as maximal anti-runs of parts.

Examples

			The partition (5,3,2,1,1,1,1) has 4 runs ((5),(3),(2),(1,1,1,1)) and 4 anti-runs ((5,3,2,1),(1),(1),(1)) so is counted under a(14).
The a(1) = 1 through a(10) = 10 reversed partitions (A = 10):
  (1)  (2)  (3)  (4)    (5)    (6)    (7)    (8)      (9)      (A)
                 (112)  (113)  (114)  (115)  (116)    (117)    (118)
                        (122)         (133)  (224)    (144)    (226)
                                      (223)  (233)    (225)    (244)
                                             (11123)  (11124)  (334)
                                                      (11223)  (11125)
                                                               (11134)
                                                               (11224)
                                                               (11233)
                                                               (12223)
		

Crossrefs

The RHS is counted by A116608, rank statistic A297155.
The LHS is counted by A133121, rank statistic A046660.
For related inequalities see A212165, A212168, A361204.
For subsets instead of partitions see A217615, A385572, A385575.
These partitions are ranked by A385576.
A000041 counts integer partitions, strict A000009.
A007690 counts partitions with no singletons, complement A183558.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.
A034839 counts subsets by number maximal runs, for partitions A384881, strict A116674.
A047993 counts partitions with max part = length (A106529).
A098859 counts Wilf partitions (complement A336866), compositions A242882.
A268193 counts partitions by maximal anti-runs, strict A384905, subsets A384893.
A355394 counts partitions with neighbors, complement A356236.

Programs

  • Mathematica
    Table[Length[Select[Reverse/@IntegerPartitions[n],Length[Union[#]]==Length[Split[#,#2!=#1&]]&]],{n,0,30}]
  • PARI
    lista(n)=Vec(polcoef((prod(i=1,n,1+x^i/(t*(1-t*x^i))+O(x*x^n))-1)*t+1,0,t)) \\ Christian Sievers, Jul 18 2025

Formula

For a partition p, let s(p) be its sum, e(p) the number of equal adjacent pairs, and d(p) the number of distinct adjacent pairs. Then Sum_{p partition} x^s(p) * t^(e(p)-d(p)) = (Product_{i>=1} (1 + x^i/(t*(1-t*x^i))) - 1) * t + 1, so a(n) is the coefficient of x^n*t^0 of this expression. - Christian Sievers, Jul 18 2025
Showing 1-6 of 6 results.