A361239 Array read by antidiagonals: T(n,k) is the number of noncrossing k-gonal cacti with n polygons up to rotation and reflection.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 4, 7, 1, 1, 1, 1, 6, 19, 28, 1, 1, 1, 1, 7, 35, 124, 108, 1, 1, 1, 1, 9, 57, 349, 931, 507, 1, 1, 1, 1, 10, 85, 737, 3766, 7801, 2431, 1, 1, 1, 1, 12, 117, 1359, 10601, 45632, 68685, 12441, 1
Offset: 0
Examples
Array begins: =================================================== n\k | 1 2 3 4 5 6 ... ----+---------------------------------------------- 0 | 1 1 1 1 1 1 ... 1 | 1 1 1 1 1 1 ... 2 | 1 1 1 1 1 1 ... 3 | 1 3 4 6 7 9 ... 4 | 1 7 19 35 57 85 ... 5 | 1 28 124 349 737 1359 ... 6 | 1 108 931 3766 10601 24112 ... 7 | 1 507 7801 45632 167741 471253 ... 8 | 1 2431 68685 580203 2790873 9678999 ... 9 | 1 12441 630850 7687128 48300850 206780448 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals).
- Wikipedia, Cactus graph.
- Index entries for sequences related to cacti.
Crossrefs
Programs
-
PARI
\\ R(n,k) gives A361236. u(n,k,r) = {r*binomial(n*(2*k-1) + r, n)/(n*(2*k-1) + r)} R(n,k) = {if(n==0, 1, u(n, k, 1)/((k-1)*n+1) + sumdiv(gcd(k,n-1), d, if(d>1, eulerphi(d)*u((n-1)/d, k, 2*k/d)/k)))} T(n, k) = {(R(n, k) + u(n\2, k, if(n%2, k, 1)))/2}