cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A369929 Array read by antidiagonals: T(n,k) is the number of achiral noncrossing partitions composed of n blocks of size k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 3, 6, 1, 1, 1, 1, 3, 5, 7, 10, 1, 1, 1, 1, 4, 5, 16, 12, 20, 1, 1, 1, 1, 4, 7, 18, 31, 30, 35, 1, 1, 1, 1, 5, 7, 31, 35, 102, 55, 70, 1, 1, 1, 1, 5, 9, 34, 64, 136, 213, 143, 126, 1
Offset: 0

Views

Author

Andrew Howroyd, Feb 07 2024

Keywords

Comments

T(n,2*k-1) is the number of achiral noncrossing k-gonal cacti with n polygons.

Examples

			Array begins:
===============================================
n\k| 1  2   3   4    5    6    7    8     9 ...
---+-------------------------------------------
0  | 1  1   1   1    1    1    1    1     1 ...
1  | 1  1   1   1    1    1    1    1     1 ...
2  | 1  1   1   1    1    1    1    1     1 ...
3  | 1  2   2   3    3    4    4    5     5 ...
4  | 1  3   3   5    5    7    7    9     9 ...
5  | 1  6   7  16   18   31   34   51    55 ...
6  | 1 10  12  31   35   64   70  109   117 ...
7  | 1 20  30 102  136  296  368  651   775 ...
8  | 1 35  55 213  285  663  819 1513  1785 ...
9  | 1 70 143 712 1155 3142 4495 9304 12350 ...
...
		

Crossrefs

Columns are: A000012, A001405(n-1), A047749 (k=3), A369930 (k=4), A143546 (k=5), A143547 (k=7), A143554 (k=9), A192893 (k=11).

Programs

  • PARI
    \\ u(n,k,r) are Fuss-Catalan numbers.
    u(n,k,r) = {r*binomial(k*n + r, n)/(k*n + r)}
    e(n,k) = {sum(j=0, n\2, u(j, k, 1+(n-2*j)*k/2))}
    T(n, k)={if(n==0, 1, if(k%2, if(n%2, 2*u(n\2, k, (k+1)/2), u(n/2, k, 1) + u(n/2-1, k, k)), e(n, k) + if(n%2, u(n\2, k, k/2)))/2)}

Formula

T(n,k) = 2*A303929(n,k) - A303694(n,k).
T(n,2*k-1) = 2*A361239(n,k) - A361236(n,k).

A361236 Array read by antidiagonals: T(n,k) is the number of noncrossing k-gonal cacti with n polygons up to rotation.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 5, 11, 1, 1, 1, 1, 8, 33, 49, 1, 1, 1, 1, 9, 63, 230, 204, 1, 1, 1, 1, 12, 105, 664, 1827, 984, 1, 1, 1, 1, 13, 159, 1419, 7462, 15466, 4807, 1, 1, 1, 1, 16, 221, 2637, 21085, 90896, 137085, 24739, 1
Offset: 0

Views

Author

Andrew Howroyd, Mar 05 2023

Keywords

Comments

The number of noncrossing k-gonal cacti is given by column 2*(k-1) of A070914. This sequence enumerates these cacti with rotations being considered equivalent.
Equivalently, T(n,k) is the number of connected acyclic k-uniform noncrossing antichains with n blocks covering (k-1)*n+1 nodes where the intersection of two blocks is at most 1 node modulo cyclic rotation of the nodes.
Noncrossing trees correspond to the case of k = 2.

Examples

			=====================================================
n\k | 1     2       3        4        5         6 ...
----+------------------------------------------------
  0 | 1     1       1        1        1         1 ...
  1 | 1     1       1        1        1         1 ...
  2 | 1     1       1        1        1         1 ...
  3 | 1     4       5        8        9        12 ...
  4 | 1    11      33       63      105       159 ...
  5 | 1    49     230      664     1419      2637 ...
  6 | 1   204    1827     7462    21085     48048 ...
  7 | 1   984   15466    90896   334707    941100 ...
  8 | 1  4807  137085  1159587  5579961  19354687 ...
  9 | 1 24739 1260545 15369761 96589350 413533260 ...
  ...
		

Crossrefs

Columns k=1..4 are A000012, A296532, A361237, A361238.
Row n=3 is A042948.

Programs

  • PARI
    \\ here u is Fuss-Catalan sequence with p = 2*k-1.
    u(n,k,r) = {r*binomial(n*(2*k-1) + r, n)/(n*(2*k-1) + r)}
    T(n,k) = if(n==0, 1, u(n, k, 1)/((k-1)*n+1) + sumdiv(gcd(k,n-1), d, if(d>1, eulerphi(d)*u((n-1)/d, k, 2*k/d)/k)))

Formula

T(0,k) = T(1,k) = T(2,k) = 1.

A361240 Number of nonequivalent noncrossing triangular cacti with n triangles up to rotation and reflection.

Original entry on oeis.org

1, 1, 1, 4, 19, 124, 931, 7801, 68685, 630850, 5966610, 57808920, 571178751, 5737672339, 58455577800, 602859484608, 6283968796705, 66119472527814, 701526880303315, 7498841163925819, 80696081185766970, 873654670250482120, 9510760874015305314, 104056578392127906720
Offset: 0

Views

Author

Andrew Howroyd, Mar 06 2023

Keywords

Crossrefs

Column 3 of A361239.

Formula

a(2*n) = (A361237(2*n) + A002294(n))/2; a(2*n+1) = (A361237(2*n+1) + A118970(n))/2.

A361241 Number of nonequivalent noncrossing 4-gonal cacti with n polygons up to rotation and reflection.

Original entry on oeis.org

1, 1, 1, 6, 35, 349, 3766, 45632, 580203, 7687128, 104898024, 1466605630, 20916933674, 303368072539, 4463328542008, 66484512715040, 1001084180891355, 15217675702394661, 233285495922344929, 3603276856175739600, 56033315904277236728, 876698296980033411125
Offset: 0

Views

Author

Andrew Howroyd, Mar 06 2023

Keywords

Crossrefs

Column 4 of A361239.
Cf. A361238.

Formula

a(2*n) = (A361238(2*n) + binomial(7*n + 1, n)/(7*n + 1))/2; a(2*n+1) = (A361238(2*n+1) + 4*binomial(7*n + 4, n)/(7*n + 4))/2.

A361243 Number of nonequivalent noncrossing cacti with n nodes up to rotation and reflection.

Original entry on oeis.org

1, 1, 1, 2, 5, 17, 79, 421, 2537, 16214, 108204, 743953, 5237414, 37574426, 273889801, 2023645764, 15128049989, 114256903169, 870786692493, 6690155544157, 51771411793812, 403238508004050, 3159259746188665, 24884525271410389, 196966954270163612
Offset: 0

Views

Author

Andrew Howroyd, Mar 07 2023

Keywords

Comments

A noncrossing cactus is a connected noncrossing graph (A007297) that is a cactus graph (a tree of edges and polygons).

Examples

			The a(4) = 5 nonequivalent cacti have the following blocks:
  {{1,2}, {1,3}, {1,4}},
  {{1,2}, {1,3}, {3,4}},
  {{1,2}, {1,4}, {2,3}},
  {{1,2}, {1,3,4}},
  {{1,2,3,4}}.
Graphically these can be represented:
   1---4    1   4    1---4    1---4    1---4
   | \      | \ |    |        | \ |    |   |
   2   3    2   3    2---3    2   3    2---3
		

Crossrefs

Programs

  • PARI
    \\ Here F(n) is the g.f. of A003168.
    F(n) = {1 + serreverse(x/((1+2*x)*(1+x)^2) + O(x*x^n))}
    seq(n) = {my(f=F(n-1)); Vec(1/(1 - x*subst(f + O(x^(n\2+1)), x, x^2)) + 1 + intformal(f) - sum(d=2, n, eulerphi(d) * log(1-subst(x*f^2 + O(x^(n\d+1)),x,x^d)) / d), -n-1)/2}
Showing 1-5 of 5 results.