cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A361242 Number of nonequivalent noncrossing cacti with n nodes up to rotation.

Original entry on oeis.org

1, 1, 1, 2, 7, 26, 144, 800, 4995, 32176, 215914, 1486270, 10471534, 75137664, 547756650, 4047212142, 30255934851, 228513227318, 1741572167716, 13380306774014, 103542814440878, 806476983310180, 6318519422577854, 49769050291536486, 393933908000862866
Offset: 0

Views

Author

Andrew Howroyd, Mar 07 2023

Keywords

Comments

A noncrossing cactus is a connected noncrossing graph (A007297) that is a cactus graph (a tree of edges and polygons).
Since every cactus is an outerplanar graph, every cactus has at least one drawing as a noncrossing graph.

Examples

			The a(3) = 2 nonequivalent cacti have the following blocks:
   {{1,2}, {1,3}},
   {{1,2,3}}.
Graphically these can be represented:
        1           1
      /  \        /  \
     2    3      2----3
.
The a(4) = 7 nonequivalent cacti have the following blocks:
  {{1,2}, {1,3}, {1,4}},
  {{1,2}, {1,3}, {3,4}},
  {{1,2}, {1,4}, {2,3}},
  {{1,2}, {2,4}, {3,4}},
  {{1,2}, {1,3,4}},
  {{1,2}, {2,3,4}},
  {{1,2,3,4}}.
Graphically these can be represented:
   1---4    1   4    1---4    1   4
   | \      | \ |    |        | / |
   2   3    2   3    2---3    2   3
.
   1---4    1   4    1---4
   | \ |    | / |    |   |
   2   3    2---3    2---3
		

Crossrefs

Programs

  • PARI
    \\ Here F(n) is the g.f. of A003168.
    F(n) = {1 + serreverse(x/((1+2*x)*(1+x)^2) + O(x*x^n))}
    seq(n) = {my(f=F(n-1)); Vec(1 + intformal(f) - sum(d=2, n, eulerphi(d) * log(1-subst(x*f^2 + O(x^(n\d+1)),x,x^d)) / d), -n-1)}

A361239 Array read by antidiagonals: T(n,k) is the number of noncrossing k-gonal cacti with n polygons up to rotation and reflection.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 4, 7, 1, 1, 1, 1, 6, 19, 28, 1, 1, 1, 1, 7, 35, 124, 108, 1, 1, 1, 1, 9, 57, 349, 931, 507, 1, 1, 1, 1, 10, 85, 737, 3766, 7801, 2431, 1, 1, 1, 1, 12, 117, 1359, 10601, 45632, 68685, 12441, 1
Offset: 0

Views

Author

Andrew Howroyd, Mar 06 2023

Keywords

Examples

			Array begins:
===================================================
n\k | 1     2      3       4        5         6 ...
----+----------------------------------------------
  0 | 1     1      1       1        1         1 ...
  1 | 1     1      1       1        1         1 ...
  2 | 1     1      1       1        1         1 ...
  3 | 1     3      4       6        7         9 ...
  4 | 1     7     19      35       57        85 ...
  5 | 1    28    124     349      737      1359 ...
  6 | 1   108    931    3766    10601     24112 ...
  7 | 1   507   7801   45632   167741    471253 ...
  8 | 1  2431  68685  580203  2790873   9678999 ...
  9 | 1 12441 630850 7687128 48300850 206780448 ...
  ...
		

Crossrefs

Columns 1..4 are A000012, A296533, A361240, A361241.
Row n=3 is A032766.

Programs

  • PARI
    \\ R(n,k) gives A361236.
    u(n,k,r) = {r*binomial(n*(2*k-1) + r, n)/(n*(2*k-1) + r)}
    R(n,k) = {if(n==0, 1, u(n, k, 1)/((k-1)*n+1) + sumdiv(gcd(k,n-1), d, if(d>1, eulerphi(d)*u((n-1)/d, k, 2*k/d)/k)))}
    T(n, k) = {(R(n, k) + u(n\2, k, if(n%2, k, 1)))/2}

Formula

T(0,k) = T(1,k) = T(2,k) = 1.
T(2*n,k) = (A361236(2*n,k) + binomial((2*k-1)*n + 1, n)/((2*k-1)*n + 1))/2.
T(2*n+1,k) = (A361236(2*n+1,k) + k*binomial((2*k-1)*n + k, n)/((2*k-1)*n + k))/2.
Showing 1-2 of 2 results.