A361243 Number of nonequivalent noncrossing cacti with n nodes up to rotation and reflection.
1, 1, 1, 2, 5, 17, 79, 421, 2537, 16214, 108204, 743953, 5237414, 37574426, 273889801, 2023645764, 15128049989, 114256903169, 870786692493, 6690155544157, 51771411793812, 403238508004050, 3159259746188665, 24884525271410389, 196966954270163612
Offset: 0
Keywords
Examples
The a(4) = 5 nonequivalent cacti have the following blocks: {{1,2}, {1,3}, {1,4}}, {{1,2}, {1,3}, {3,4}}, {{1,2}, {1,4}, {2,3}}, {{1,2}, {1,3,4}}, {{1,2,3,4}}. Graphically these can be represented: 1---4 1 4 1---4 1---4 1---4 | \ | \ | | | \ | | | 2 3 2 3 2---3 2 3 2---3
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- Wikipedia, Cactus graph.
- Index entries for sequences related to cacti.
Programs
-
PARI
\\ Here F(n) is the g.f. of A003168. F(n) = {1 + serreverse(x/((1+2*x)*(1+x)^2) + O(x*x^n))} seq(n) = {my(f=F(n-1)); Vec(1/(1 - x*subst(f + O(x^(n\2+1)), x, x^2)) + 1 + intformal(f) - sum(d=2, n, eulerphi(d) * log(1-subst(x*f^2 + O(x^(n\d+1)),x,x^d)) / d), -n-1)/2}
Comments