cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361267 Numbers k such that prime(k+2) - prime(k) = 6.

Original entry on oeis.org

3, 4, 5, 6, 7, 12, 13, 19, 25, 26, 27, 28, 43, 44, 48, 49, 59, 63, 64, 69, 88, 89, 112, 116, 142, 143, 147, 148, 151, 152, 181, 182, 206, 211, 212, 224, 225, 229, 234, 235, 236, 253, 261, 264, 276, 285, 286, 287, 301, 302, 313, 314, 322, 332, 336, 352, 384, 389
Offset: 1

Views

Author

Atabey Kaygun, Mar 06 2023

Keywords

Crossrefs

Programs

  • Clojure
    (defn next-prime [n]
      (if (= n 2)
          3
          (let [m (+ n 2)
                t (-> n Math/sqrt int (+ 2))]
              (if (some #(zero? (mod m %)) (range 2 t))
                  (next-prime m)
                  m))))
    (def primes (lazy-seq (iterate next-prime 2)))
    (defn triplet-primes-positions [n]
      (->> primes
           (take n)
           (partition 3 1)
           (map list (range))
           (filter (fn [[i xs]] (= 6 (- (last xs) (first xs)))))
           (map #(-> % first inc))))
    (println (triplet-primes-positions 2000))
    
  • Maple
    q:= n-> is(ithprime(n+2)-ithprime(n)=6):
    select(q, [$1..400])[];  # Alois P. Heinz, Mar 06 2023
  • Mathematica
    Select[Range[400], Prime[# + 2] - Prime[#] == 6 &] (* Michael De Vlieger, Mar 06 2023 *)
    PrimePi/@(Select[Partition[Prime[Range[400]],3,1],#[[3]]-#[[1]]==6&][[;;,1]]) (* Harvey P. Dale, Sep 16 2023 *)
  • Python
    from itertools import count, islice
    from sympy import nextprime, prime
    def A361267_gen(startvalue=1): # generator of terms >= startvalue
        p = prime(m:=max(startvalue,1))
        q = nextprime(p)
        r = nextprime(q)
        for k in count(m):
            if r-p == 6:
                yield k
            p, q, r = q, r, nextprime(r)
    A361267_list = list(islice(A361267_gen(),20)) # Chai Wah Wu, Mar 27 2023

Formula

a(n) = A000720(A007529(n)). - Alois P. Heinz, Mar 06 2023