A361267 Numbers k such that prime(k+2) - prime(k) = 6.
3, 4, 5, 6, 7, 12, 13, 19, 25, 26, 27, 28, 43, 44, 48, 49, 59, 63, 64, 69, 88, 89, 112, 116, 142, 143, 147, 148, 151, 152, 181, 182, 206, 211, 212, 224, 225, 229, 234, 235, 236, 253, 261, 264, 276, 285, 286, 287, 301, 302, 313, 314, 322, 332, 336, 352, 384, 389
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Prime Triplet
- Wikipedia, Prime triplet
Programs
-
Clojure
(defn next-prime [n] (if (= n 2) 3 (let [m (+ n 2) t (-> n Math/sqrt int (+ 2))] (if (some #(zero? (mod m %)) (range 2 t)) (next-prime m) m)))) (def primes (lazy-seq (iterate next-prime 2))) (defn triplet-primes-positions [n] (->> primes (take n) (partition 3 1) (map list (range)) (filter (fn [[i xs]] (= 6 (- (last xs) (first xs))))) (map #(-> % first inc)))) (println (triplet-primes-positions 2000))
-
Maple
q:= n-> is(ithprime(n+2)-ithprime(n)=6): select(q, [$1..400])[]; # Alois P. Heinz, Mar 06 2023
-
Mathematica
Select[Range[400], Prime[# + 2] - Prime[#] == 6 &] (* Michael De Vlieger, Mar 06 2023 *) PrimePi/@(Select[Partition[Prime[Range[400]],3,1],#[[3]]-#[[1]]==6&][[;;,1]]) (* Harvey P. Dale, Sep 16 2023 *)
-
Python
from itertools import count, islice from sympy import nextprime, prime def A361267_gen(startvalue=1): # generator of terms >= startvalue p = prime(m:=max(startvalue,1)) q = nextprime(p) r = nextprime(q) for k in count(m): if r-p == 6: yield k p, q, r = q, r, nextprime(r) A361267_list = list(islice(A361267_gen(),20)) # Chai Wah Wu, Mar 27 2023