cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Atabey Kaygun

Atabey Kaygun's wiki page.

Atabey Kaygun has authored 7 sequences.

A377936 Number of matchings in the complete planted binary tree with 2^n leaves.

Original entry on oeis.org

2, 4, 24, 720, 712800, 666860040000, 597568733024952150000000, 474258018883889933710067708314342382812500000000
Offset: 0

Author

Atabey Kaygun, Nov 11 2024

Keywords

Comments

A planted binary tree has an initial root node with 1 child. The root is not considered to be a leaf. All internal nodes have degree 3. The total number of nodes is 2*n.

Examples

			The initial graphs for n=0..2 are:
      o        o                 o
      |        |                 |
      o        o                 o
             /   \             /   \
            o     o           o     o
                             / \   / \
                            o   o o   o
		

Crossrefs

Cf. A338293.

Programs

  • PARI
    lista(n)={my(u=vector(n), v=vector(n)); u[1]=v[1]=1; for(n=1, #u-1, u[n+1]=v[n]^2; v[n+1]=u[n+1] + 2*v[n]*u[n]); v+u} \\ Andrew Howroyd, Nov 14 2024

Formula

a(n) = u(n) + v(n) where u(n) = v(n-1)^2 and v(n) = v(n-1)^2 + 2*v(n-1)*u(n-1) with u(1) = v(1) = 1. - Andrew Howroyd, Nov 14 2024

Extensions

a(5) onwards from Andrew Howroyd, Nov 14 2024

A361254 Number of n-regular graphs on 2*n labeled nodes.

Original entry on oeis.org

1, 1, 3, 70, 19355, 66462606, 2977635137862, 1803595358964773088, 15138592322753242235338875, 1793196665025885172290508971592750, 3040059281615704147007085764679679740691838, 74597015246986083384362428357508730776063716190667288, 26737694395324301026230134763403079891362936970900741153038680278
Offset: 0

Author

Atabey Kaygun, Mar 06 2023

Keywords

Comments

These graphs share the same degree sequence as the complete bipartite graphs K(n,n).

Crossrefs

Programs

  • PARI
    \\ See Links in A295193 for GraphsByDegreeSeq.
    a(n)={if(n==0, 1, vecsum(GraphsByDegreeSeq(2*n, n, (p, r)->valuation(p,x) >= n-r)[, 2])) } \\ Andrew Howroyd, Mar 06 2023

Formula

a(n) = A059441(2*n, n).

Extensions

a(11)-a(12) from Andrew Howroyd, Mar 06 2023

A361267 Numbers k such that prime(k+2) - prime(k) = 6.

Original entry on oeis.org

3, 4, 5, 6, 7, 12, 13, 19, 25, 26, 27, 28, 43, 44, 48, 49, 59, 63, 64, 69, 88, 89, 112, 116, 142, 143, 147, 148, 151, 152, 181, 182, 206, 211, 212, 224, 225, 229, 234, 235, 236, 253, 261, 264, 276, 285, 286, 287, 301, 302, 313, 314, 322, 332, 336, 352, 384, 389
Offset: 1

Author

Atabey Kaygun, Mar 06 2023

Keywords

Crossrefs

Programs

  • Clojure
    (defn next-prime [n]
      (if (= n 2)
          3
          (let [m (+ n 2)
                t (-> n Math/sqrt int (+ 2))]
              (if (some #(zero? (mod m %)) (range 2 t))
                  (next-prime m)
                  m))))
    (def primes (lazy-seq (iterate next-prime 2)))
    (defn triplet-primes-positions [n]
      (->> primes
           (take n)
           (partition 3 1)
           (map list (range))
           (filter (fn [[i xs]] (= 6 (- (last xs) (first xs)))))
           (map #(-> % first inc))))
    (println (triplet-primes-positions 2000))
    
  • Maple
    q:= n-> is(ithprime(n+2)-ithprime(n)=6):
    select(q, [$1..400])[];  # Alois P. Heinz, Mar 06 2023
  • Mathematica
    Select[Range[400], Prime[# + 2] - Prime[#] == 6 &] (* Michael De Vlieger, Mar 06 2023 *)
    PrimePi/@(Select[Partition[Prime[Range[400]],3,1],#[[3]]-#[[1]]==6&][[;;,1]]) (* Harvey P. Dale, Sep 16 2023 *)
  • Python
    from itertools import count, islice
    from sympy import nextprime, prime
    def A361267_gen(startvalue=1): # generator of terms >= startvalue
        p = prime(m:=max(startvalue,1))
        q = nextprime(p)
        r = nextprime(q)
        for k in count(m):
            if r-p == 6:
                yield k
            p, q, r = q, r, nextprime(r)
    A361267_list = list(islice(A361267_gen(),20)) # Chai Wah Wu, Mar 27 2023

Formula

a(n) = A000720(A007529(n)). - Alois P. Heinz, Mar 06 2023

A360437 The number of labeled graphs on n nodes whose degree sequences realize the first n even terms of A001223 (the prime gap sequence).

Original entry on oeis.org

0, 0, 0, 0, 1, 13, 126, 288, 8160, 110800, 8552205, 253822863, 21802799690, 1751958608840, 231900341949104, 8821242453833942, 1943505339202134370, 417503287597170065730, 18004075657522393347770, 7276527497090264178405240, 2096206309349359523650043220
Offset: 1

Author

Atabey Kaygun, Feb 07 2023

Keywords

Crossrefs

A339987 The number of labeled graphs on 2n vertices that share the same degree sequence as any unrooted binary tree on 2n vertices.

Original entry on oeis.org

1, 4, 90, 8400, 1426950, 366153480, 134292027870, 67095690261600, 43893900947947050, 36441011093916429000, 37446160423265535041100, 46669357647008722700474400, 69367722399061403579194432500, 121238024532751529573125745790000, 246171692450596203263023527657431250
Offset: 1

Author

Atabey Kaygun, Dec 25 2020

Keywords

Comments

An unrooted binary tree is a tree in which all non-leaf vertices have degree 3. With 2n vertices there will be n+1 leaves and n-1 internal vertices.

Crossrefs

Programs

  • PARI
    \\ See Links in A295193 for GraphsByDegreeSeq.
    a(n) = {if(n==1, 1, my(d=2*n-4, M=GraphsByDegreeSeq(n-1, 3, (p,r)-> subst(deriv(p),x,1) >= d-6*r), z=(2*n)!/(n-1)!); sum(i=1, matsize(M)[1], my(p=M[i,1], r=(subst(deriv(p), x, 1)-d)/2); M[i,2]*z / (2^polcoef(p,1) * 6^polcoef(p,0) * 2^r * r!)))} \\ Andrew Howroyd, Mar 01 2023

Formula

Conjectured recurrence: 32*(1 + n)*(2 + n)*(1 + 2*n)*(3 + 2*n)*(5 + 2*n)*(7 + 2*n)*(9 + 2*n)*(11589 + 10844*n + 3300*n^2 + 328*n^3)*a(n) - 8*(2 + n)*(3 + 2*n)*(5 + 2*n)*(7 + 2*n)*(9 + 2*n)*(148119 + 232328*n + 129460*n^2 + 30664*n^3 + 2624*n^4)*a(n+1) - 16*(3 + n)*(5 + 2*n)*(7 + 2*n)*(9 + 2*n)*(341634 + 712135*n + 569267*n^2 + 219308*n^3 + 40852*n^4 + 2952*n^5)*a(n+2) + 8*(4 + n)*(7 + 2*n)*(9 + 2*n)*(527520 + 1057879*n + 818282*n^2 + 306380*n^3 + 55672*n^4 + 3936*n^5)*a(n+3) - 2*(5 + n)*(9 + 2*n)*(601452 + 1117119*n + 786236*n^2 + 264028*n^3 + 42472*n^4 + 2624*n^5)*a(n+4) + 3*(4 + n)*(6 + n)*(3717 + 5228*n + 2316*n^2 + 328*n^3)*a(n+5) = 0. - Manuel Kauers and Christoph Koutschan, Mar 01 2023
Conjecture: a(n) ~ 2^(5*n - 1/2) * n^(2*n - 3/2) / (sqrt(Pi) * 3^(n-1) * exp(2*n + 21/16)), based on the recurrence by Manuel Kauers and Christoph Koutschan. - Vaclav Kotesovec, Mar 07 2023

A339847 The number of labeled 6-regular graphs on n nodes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 105, 30016, 11180820, 5188453830, 2977635137862, 2099132870973600, 1803595358964773088, 1872726690127181663775, 2329676580698022197516875, 3443086402825299720403673760, 5997229769947050271535917422040, 12218901113752712984458458475480428
Offset: 0

Author

Atabey Kaygun, Dec 21 2020

Keywords

Crossrefs

Column k=6 of A059441.
Cf. A165627 (unlabeled case), A295193.

Programs

  • PARI
    \\ Needs GraphsByDegreeSeq from links in A295193.
    a(n)={my(M=GraphsByDegreeSeq(n, 6, (p,r)->6-valuation(p,x) <= r)); if(n>=7, vecsum(M[,2]), n==0)} \\ Andrew Howroyd, Dec 26 2020

Extensions

Terms a(14) and beyond from Andrew Howroyd, Dec 26 2020

A338978 Number of labeled 5-regular graphs on 2n nodes.

Original entry on oeis.org

1, 0, 0, 1, 3507, 66462606, 2977635137862, 283097260184159421, 52469332407700365320163, 17647883828569858659972268092, 10148613081040117624319536901932188, 9494356410654311931931879706070629989407, 13859154719468565627065764000731047706917194485
Offset: 0

Author

Atabey Kaygun, Dec 18 2020

Keywords

Crossrefs

With interspersed zeros, column k=5 of A059441.
Cf. A001205, A002829, A005815, A165626 (unlabeled case).