A361272 Number of 1243-avoiding even Grassmannian permutations of size n.
1, 1, 1, 3, 6, 12, 20, 32, 47, 67, 91, 121, 156, 198, 246, 302, 365, 437, 517, 607, 706, 816, 936, 1068, 1211, 1367, 1535, 1717, 1912, 2122, 2346, 2586, 2841, 3113, 3401, 3707, 4030, 4372, 4732, 5112, 5511, 5931, 6371, 6833, 7316, 7822, 8350, 8902, 9477, 10077
Offset: 0
Examples
For n=4 the a(4) = 6 permutations are 1234, 1342, 1423, 2314, 3124, 3412.
Links
- Juan B. Gil and Jessica A. Tomasko, Pattern-avoiding even and odd Grassmannian permutations, arXiv:2207.12617 [math.CO], 2022.
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
Formula
G.f.: -(2*x^4-4*x^3+2*x-1)/((x+1)*(x-1)^4).
a(n) = (57 - 9*(-1)^n - 28*n + 6*n^2 + 4*n^3)/48. - Stefano Spezia, Mar 09 2023
Comments