A361281 a(n) = n! * Sum_{k=0..n} binomial(n*k,n-k)/k!.
1, 1, 5, 37, 481, 10001, 288901, 10820965, 511186817, 29843419681, 2106779832901, 176180844038981, 17165338119936865, 1924030148121500017, 245630480526435293381, 35409038825312233143301, 5719025066628373334423041, 1027649751647068260334391105
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..275
Programs
-
PARI
a(n) = n!*sum(k=0, n, binomial(n*k, n-k)/k!);
Formula
a(n) = n! * [x^n] exp(x * (1+x)^n).
log(a(n)) ~ n*(2*log(n) - log(log(n)) - 1 - log(2) + log(log(n))/log(n) + 1/(2*log(n)) + log(2)/log(n) - 1/(8*log(n)^2)). - Vaclav Kotesovec, Mar 12 2023
Comments