A361527 Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] having exactly k strongly connected components all of which are simple cycles, n >= 0, 0 <= k <= n.
1, 0, 1, 0, 1, 3, 0, 2, 21, 25, 0, 6, 213, 774, 543, 0, 24, 3470, 30275, 59830, 29281, 0, 120, 95982, 1847265, 7757355, 10110735, 3781503, 0, 720, 4578588, 190855000, 1522899105, 3944546095, 3767987307, 1138779265
Offset: 0
Examples
1; 0, 1; 0, 1, 3; 0, 2, 21, 25; 0, 6, 213, 774, 543; 0, 24,3470, 30275, 59830, 29281; ...
Links
- E. de Panafieu and S. Dovgal, Symbolic method and directed graph enumeration, arXiv:1903.09454 [math.CO], 2019.
- R. W. Robinson, Counting digraphs with restrictions on the strong components, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
- Eric Weisstein's World of Mathematics, Simple Directed Graph
- Wikipedia, Strongly connected component
Programs
-
Mathematica
nn = 7; a[x_] := Log[1/(1 - x)]; begfa =Total[CoefficientList[ Series[1/(Total[ CoefficientList[Series[ Exp[-u *a[x]], {x, 0, nn}], x]* Table[z^n/(2^Binomial[n, 2]), {n, 0, nn}]]), {z, 0, nn}], z]*Table[z^n 2^Binomial[n, 2], {n, 0, nn}]]; Table[Take[(Range[0, nn]! CoefficientList[begfa, {z, u}])[[i]],i], {i, 1, nn + 1}] // Grid
Comments