A361655 Number of even-length integer partitions of 2n with integer mean.
0, 1, 3, 4, 10, 6, 33, 8, 65, 68, 117, 12, 583, 14, 319, 1078, 1416, 18, 3341, 20, 8035, 5799, 1657, 24, 36708, 16954, 3496, 24553, 68528, 30, 192180, 32, 178802, 91561, 14625, 485598, 955142, 38, 29223, 316085, 2622697, 42, 3528870, 44, 2443527, 5740043
Offset: 0
Keywords
Examples
The a(0) = 0 through a(5) = 6 partitions: . (11) (22) (33) (44) (55) (31) (42) (53) (64) (1111) (51) (62) (73) (111111) (71) (82) (2222) (91) (3221) (1111111111) (3311) (4211) (5111) (11111111) For example, the partition (4,2,1,1) has length 4 and mean 2, so is counted under a(4).
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[2n], EvenQ[Length[#]]&&IntegerQ[Mean[#]]&]],{n,0,15}]
-
PARI
a(n)=if(n==0, 0, sumdiv(n, d, polcoef(1/prod(k=1, 2*d, 1 - x^k + O(x*x^(2*(n-d)))), 2*(n-d)))) \\ Andrew Howroyd, Mar 24 2023
Extensions
Terms a(36) and beyond from Andrew Howroyd, Mar 24 2023
Comments