A361654 Triangle read by rows where T(n,k) is the number of nonempty subsets of {1,...,2n-1} with median n and minimum k.
1, 2, 1, 5, 3, 1, 15, 9, 4, 1, 50, 29, 14, 5, 1, 176, 99, 49, 20, 6, 1, 638, 351, 175, 76, 27, 7, 1, 2354, 1275, 637, 286, 111, 35, 8, 1, 8789, 4707, 2353, 1078, 441, 155, 44, 9, 1, 33099, 17577, 8788, 4081, 1728, 650, 209, 54, 10, 1
Offset: 1
Examples
Triangle begins: 1 2 1 5 3 1 15 9 4 1 50 29 14 5 1 176 99 49 20 6 1 638 351 175 76 27 7 1 2354 1275 637 286 111 35 8 1 8789 4707 2353 1078 441 155 44 9 1 Row n = 4 counts the following subsets: {1,7} {2,6} {3,5} {4} {1,4,5} {2,4,5} {3,4,5} {1,4,6} {2,4,6} {3,4,6} {1,4,7} {2,4,7} {3,4,7} {1,2,6,7} {2,3,5,6} {1,3,5,6} {2,3,5,7} {1,3,5,7} {2,3,4,5,6} {1,2,4,5,6} {2,3,4,5,7} {1,2,4,5,7} {2,3,4,6,7} {1,2,4,6,7} {1,3,4,5,6} {1,3,4,5,7} {1,3,4,6,7} {1,2,3,5,6,7} {1,2,3,4,5,6,7}
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
- Paul Barry, A Riordan array family for some integrable lattice models, arXiv:2409.09547 [math.CO], 2024. See p. 7.
- Paul Barry, Extensions of Riordan Arrays and Their Applications, Mathematics (2025) Vol. 13, No. 2, 242. See p. 12.
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[2n-1]],Min@@#==k&&Median[#]==n&]],{n,6},{k,n}]
-
PARI
T(n,k) = sum(j=0, n-k, binomial(2*j+k-2, j)) \\ Andrew Howroyd, Apr 09 2023
Formula
T(n,k) = 1 + Sum_{j=1..n-k} binomial(2*j+k-2, j). - Andrew Howroyd, Apr 09 2023
Comments