cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A006134 a(n) = Sum_{k=0..n} binomial(2*k,k).

Original entry on oeis.org

1, 3, 9, 29, 99, 351, 1275, 4707, 17577, 66197, 250953, 956385, 3660541, 14061141, 54177741, 209295261, 810375651, 3143981871, 12219117171, 47564380971, 185410909791, 723668784231, 2827767747951, 11061198475551, 43308802158651, 169719408596403, 665637941544507
Offset: 0

Views

Author

Keywords

Comments

The expression a(n) = B^n*Sum_{ k=0..n } binomial(2*k,k)/B^k gives A006134 for B=1, A082590 (B=2), A132310 (B=3), A002457 (B=4), A144635 (B=5). - N. J. A. Sloane, Jan 21 2009
T(n+1,1) from table A045912 of characteristic polynomial of negative Pascal matrix. - Michael Somos, Jul 24 2002
p divides a((p-3)/2) for p=11, 13, 23, 37, 47, 59, 61, 71, 73, 83, 97, 107, 109, 131, 157, 167, ...: A097933. Also primes congruent to {1, 2, 3, 11} mod 12 or primes p such that 3 is a square mod p (excluding 2 and 3) A038874. - Alexander Adamchuk, Jul 05 2006
Partial sums of the even central binomial coefficients. For p prime >=5, a(p-1) = 1 or -1 (mod p) according as p = 1 or -1 (mod 3) (see Pan and Sun link). - David Callan, Nov 29 2007
First column of triangle A187887. - Michel Marcus, Jun 23 2013
From Gus Wiseman, Apr 20 2023: (Start)
Also the number of nonempty subsets of {1,...,2n+1} with median n+1, where the median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). The odd/even-length cases are A000984 and A006134(n-1). For example, the a(0) = 1 through a(2) = 9 subsets are:
{1} {2} {3}
{1,3} {1,5}
{1,2,3} {2,4}
{1,3,4}
{1,3,5}
{2,3,4}
{2,3,5}
{1,2,4,5}
{1,2,3,4,5}
Alternatively, a(n-1) is the number of nonempty subsets of {1,...,2n-1} with median n.
(End)

Examples

			1 + 3*x + 9*x^2 + 29*x^3 + 99*x^4 + 351*x^5 + 1275*x^6 + 4707*x^7 + 17577*x^8 + ...
		

References

  • Marko Petkovsek, Herbert Wilf and Doron Zeilberger, A=B, A K Peters, 1996, p. 22.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000984 (first differences), A097933, A038874, A132310.
Equals A066796 + 1.
Odd bisection of A100066.
Row sums of A361654 (also column k = 2).
A007318 counts subsets by length, A231147 by median, A013580 by integer median.
A359893 and A359901 count partitions by median.

Programs

  • MATLAB
    n=10; x=pascal(n); trace(x)
    
  • Magma
    &cat[ [&+[ Binomial(2*k, k): k in [0..n]]]: n in [0..30]]; // Vincenzo Librandi, Aug 13 2015
  • Maple
    A006134 := proc(n) sum(binomial(2*k,k),k=0..n); end;
    a := n -> -binomial(2*(n+1),n+1)*hypergeom([1,n+3/2],[n+2], 4) - I/sqrt(3):
    seq(simplify(a(n)), n=0..24); # Peter Luschny, Oct 29 2015
    # third program:
    A006134 := series(exp(2*x)*BesselI(0, 2*x) + exp(x)*int(BesselI(0, 2*x)*exp(x), x), x = 0, 25):
    seq(n!*coeff(A006134, x, n), n=0..24); # Mélika Tebni, Feb 27 2024
  • Mathematica
    Table[Sum[((2k)!/(k!)^2),{k,0,n}], {n,0,50}] (* Alexander Adamchuk, Jul 05 2006 *)
    a[ n_] := (4/3) Binomial[ 2 n, n] Hypergeometric2F1[ 1/2, 1, -n + 1/2, -1/3] (* Michael Somos, Jun 20 2012 *)
    Accumulate[Table[Binomial[2n,n],{n,0,30}]] (* Harvey P. Dale, Jan 11 2015 *)
    CoefficientList[Series[1/((1 - x) Sqrt[1 - 4 x]), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 13 2015 *)
  • Maxima
    makelist(sum(binomial(2*k,k),k,0,n),n,0,12); /* Emanuele Munarini, Mar 15 2011 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( charpoly( matrix( n+1, n+1, i, j, -binomial( i+j-2, i-1))), 1))} \\ Michael Somos, Jul 10 2002
    
  • PARI
    {a(n)=binomial(2*n,n)*sum(k=0,2*n,(-1)^k*polcoeff((1+x+x^2)^n,k)/binomial(2*n,k))} \\ Paul D. Hanna, Aug 21 2007
    
  • PARI
    my(x='x+O('x^100)); Vec(1/((1-x)*sqrt(1-4*x))) \\ Altug Alkan, Oct 29 2015
    

Formula

From Alexander Adamchuk, Jul 05 2006: (Start)
a(n) = Sum_{k=0..n} (2k)!/(k!)^2.
a(n) = A066796(n) + 1, n>0. (End)
G.f.: 1/((1-x)*sqrt(1-4*x)).
D-finite with recurrence: (n+2)*a(n+2) - (5*n+8)*a(n+1) + 2*(2*n+3)*a(n) = 0. - Emanuele Munarini, Mar 15 2011
a(n) = C(2n,n) * Sum_{k=0..2n} (-1)^k*trinomial(n,k)/C(2n,k) where trinomial(n,k) = [x^k] (1 + x + x^2)^n. E.g. a(2) = C(4,2)*(1/1 - 2/4 + 3/6 - 2/4 + 1/1) = 6*(3/2) = 9 ; a(3) = C(6,3)*(1/1 - 3/6 + 6/15 - 7/20 + 6/15 - 3/6 + 1/1) = 20*(29/20) = 29. - Paul D. Hanna, Aug 21 2007
From Alzhekeyev Ascar M, Jan 19 2012: (Start)
a(n) = Sum_{ k=0..n } b(k)*binomial(n+k,k), where b(k)=0 for n-k == 2 (mod 3), b(k)=1 for n-k == 0 or 1 (mod 6), and b(k)=-1 for n-k== 3 or 4 (mod 6).
a(n) = Sum_{ k=0..n-1 } c(k)*binomial(2n,k) + binomial(2n,n), where c(k)=0 for n-k == 0 (mod 3), c(k)=1 for n-k== 1 (mod 3), and c(k)=-1 for n-k==2 (mod 3). (End)
a(n) ~ 2^(2*n+2)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 06 2012
G.f.: G(0)/2/(1-x), where G(k)= 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
G.f.: G(0)/(1-x), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2) - x*(4*k+2)*(4*k+3)/(x*(4*k+3) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 26 2013
a(n) = Sum_{k = 0..n} binomial(n+1,k+1)*A002426(k). - Peter Bala, Oct 29 2015
a(n) = -binomial(2*(n+1),n+1)*hypergeom([1,n+3/2],[n+2], 4) - i/sqrt(3). - Peter Luschny, Oct 29 2015
a(n) = binomial(2*n, n)*hypergeom([1,-n], [1/2-n], 1/4). - Peter Luschny, Mar 16 2016
From Gus Wiseman, Apr 20 2023: (Start)
a(n+1) - a(n) = A000984(n).
a(n) = A013580(2n+1,n+1) (conjectured).
a(n) = 2*A024718(n) - 1.
a(n) = A100066(2n+1).
a(n) = A231147(2n+1,n+1) (conjectured). (End)
a(n) = Sum_{k=0..floor(n/3)} 3^(n-3*k) * binomial(n-k,2*k) * binomial(2*k,k) (Sawhney, 2017). - Amiram Eldar, Feb 24 2024
From Mélika Tebni, Feb 27 2024: (Start)
Limit_{n -> oo} a(n) / A281593(n) = 2.
E.g.f.: exp(2*x)*BesselI(0,2*x) + exp(x)*integral( BesselI(0,2*x)*exp(x) ) dx. (End)
a(n) = [(x*y)^n] 1/((1 - (x + y))*(1 - x*y)). - Stefano Spezia, Feb 16 2025
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(2*n+1-k, n-2*k). - Michael Weselcouch, Jun 17 2025
a(n) = binomial(1+2*n, n)*hypergeom([1, (1-n)/2, -n/2], [-1-2*n, 2+n], 4). - Stefano Spezia, Jun 18 2025

Extensions

Simpler definition from Alexander Adamchuk, Jul 05 2006

A079309 a(n) = C(1,1) + C(3,2) + C(5,3) + ... + C(2*n-1,n).

Original entry on oeis.org

1, 4, 14, 49, 175, 637, 2353, 8788, 33098, 125476, 478192, 1830270, 7030570, 27088870, 104647630, 405187825, 1571990935, 6109558585, 23782190485, 92705454895, 361834392115, 1413883873975, 5530599237775, 21654401079325, 84859704298201, 332818970772253
Offset: 1

Views

Author

Miklos Kristof, Feb 10 2003

Keywords

Comments

a(n) is the sum of pyramid weights of all Dyck paths of length 2n (for pyramid weight see Denise and Simion). Equivalently, a(n) is the sum of the total lengths of end branches of an ordered tree, summation being over all ordered trees with n edges. For example, the five ordered trees with 3 edges have total lengths of endbranches 3,2,3,3 and 3. - Emeric Deutsch, May 30 2003
a(n) is the number of Motzkin paths of length 2n with exactly one level segment. (A level segment is a maximal sequence of contiguous flatsteps.) Example: for n=2, the paths counted are FFFF, FFUD, UDFF, UFFD. The formula for a(n) below counts these paths by length of the level segment. - David Callan, Jul 15 2004
The inverse Catalan transform yields A024495, shifted once left. - R. J. Mathar, Jul 07 2009
From Paul Barry, Mar 29 2010: (Start)
Hankel transform is A138341.
The aerated sequence 0, 0, 1, 0, 4, 0, 14, 0, 49, ... has e.g.f. int(cosh(x-t)*Bessel_I(1,2t), t = 0..x). (End)
a(n) is the number of terms of A031443 not exceeding 4^n. - Vladimir Shevelev, Oct 01 2010
Also the number of nonempty subsets of {1..2n} with median n, bisection of A361801. The version containing n is A001700 (bisected). Replacing 2n with 2n+1 and n with n+1 gives A006134. For mean instead of median we have A212352. - Gus Wiseman, Apr 16 2023

Examples

			a(4) = C(1,1) + C(3,2) + C(5,3) + C(7,4) = 1 + 3 + 10 + 35 = 49.
G.f. = x + 4*x^2 + 14*x^3 + 49*x^4 + 175*x^5 + 637*x^6 + 2353*x^7 + ...
From _Gus Wiseman_, Apr 16 2023: (Start)
The a(1) = 1 through a(3) = 14 subsets of {1..2n} with median n:
  {1}  {2}      {3}
       {1,3}    {1,5}
       {1,2,3}  {2,4}
       {1,2,4}  {1,3,4}
                {1,3,5}
                {1,3,6}
                {2,3,4}
                {2,3,5}
                {2,3,6}
                {1,2,4,5}
                {1,2,4,6}
                {1,2,3,4,5}
                {1,2,3,4,6}
                {1,2,3,5,6}
(End)
		

Crossrefs

Equals A024718(n) - 1.
This is the even (or odd) bisection of A361801.
A007318 counts subsets by length, A327481 by mean, A013580 by median.
A359893 and A359901 count partitions by median.

Programs

  • Maple
    a := n -> add(binomial(2*j, j)/2, j=1..n): seq(a(n), n=1..24); # Zerinvary Lajos, Oct 25 2006
    a := n -> add(abs(binomial(-j, -2*j)), j=1..n): seq(a(n), n=1..24); # Zerinvary Lajos, Oct 03 2007
    f:= gfun:-rectoproc({n*a(n) +(-5*n+2)*a(n-1) +2*(2*n-1)*a(n-2)=0,a(1)=1,a(2)=4},a(n),remember):
    map(f, [$1..100]); # Robert Israel, Jun 24 2015
  • Mathematica
    Rest[CoefficientList[Series[(1/Sqrt[1-4*x]-1)/(1-x)/2, {x, 0, 20}], x]] (* Vaclav Kotesovec, Feb 13 2014 *)
    Accumulate[Table[Binomial[2n-1,n],{n,30}]] (* Harvey P. Dale, Jan 06 2021 *)
  • PARI
    {a(n) = sum(k=1, n, binomial(2*k - 1, k))}; /* Michael Somos, Feb 14 2006 */
    
  • PARI
    my(x='x+O('x^40)); Vec((1/sqrt(1-4*x)-1)/(1-x)/2) \\ Altug Alkan, Dec 24 2015

Formula

a(n) = (1/2)*(C(2, 1) + C(4, 2) + C(6, 3) + ... + C(2*n, n)) = A066796(n)/2. - Vladeta Jovovic, Feb 12 2003
G.f.: (1/sqrt(1 - 4*x) - 1)/(1 - x)/2. - Vladeta Jovovic, Feb 12 2003
Given g.f. A(x), then x * A(x - x^2) is g.f. of A024495. - Michael Somos, Feb 14 2006
a(n) = A066796(n)/2. - Zerinvary Lajos, Oct 25 2006
a(n) = Sum_{0 <= i <= j <= n} binomial(i+j, i). - Benoit Cloitre, Nov 25 2006
D-finite with recurrence n*a(n) + (-5*n+2)*a(n-1) + 2*(2*n-1)*a(n-2) = 0. - R. J. Mathar, Nov 30 2012
a(n) ~ 2^(2*n+1) / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 13 2014
a(n) = Sum_{k=0..n-1} A001700(k). - Doug Bell, Jun 23 2015
a(n) = -binomial(2*n+1, n)*hypergeom([1, n+3/2], [n+2], 4) - (i/sqrt(3) + 1)/2. - Peter Luschny, May 18 2018
From Gus Wiseman, Apr 18 2023: (Start)
a(n) = A024718(n) - 1.
a(n) = A231147(2n+1,n).
a(n) = A361801(2n) = A361801(2n+1). (End)
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(2*n+2-k, n-2*k). - Michael Weselcouch, Jun 17 2025
a(n) = binomial(2*(1+n), n)*hypergeom([1, (1-n)/2, -n/2], [-2*(1+n), 3+n], 4). - Stefano Spezia, Jun 18 2025

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 11 2003

A013580 Triangle formed in same way as Pascal's triangle (A007318) except 1 is added to central element in even-numbered rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 5, 9, 5, 1, 1, 6, 14, 14, 6, 1, 1, 7, 20, 29, 20, 7, 1, 1, 8, 27, 49, 49, 27, 8, 1, 1, 9, 35, 76, 99, 76, 35, 9, 1, 1, 10, 44, 111, 175, 175, 111, 44, 10, 1, 1, 11, 54, 155, 286, 351, 286, 155, 54, 11, 1, 1, 12, 65, 209, 441, 637, 637, 441, 209, 65
Offset: 0

Views

Author

Martin Hecko (bigusm(AT)interramp.com)

Keywords

Comments

From Gus Wiseman, Apr 19 2023: (Start)
Appears to be the number of nonempty subsets of {1,...,n} with median k, where the median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). For example, row n = 5 counts the following subsets:
{1} {2} {3} {4} {5}
{1,3} {1,5} {3,5}
{1,2,3} {2,4} {1,4,5}
{1,2,4} {1,3,4} {2,4,5}
{1,2,5} {1,3,5} {3,4,5}
{2,3,4}
{2,3,5}
{1,2,4,5}
{1,2,3,4,5}
Including half-steps gives A231147.
For mean instead of median we have A327481.
(End)

Examples

			Triangle begins:
   1
   1   1
   1   3   1
   1   4   4   1
   1   5   9   5   1
   1   6  14  14   6   1
   1   7  20  29  20   7   1
   1   8  27  49  49  27   8   1
   1   9  35  76  99  76  35   9   1
   1  10  44 111 175 175 111  44  10   1
   1  11  54 155 286 351 286 155  54  11   1
   1  12  65 209 441 637 637 441 209  65  12   1
		

Crossrefs

Row sums give A000975, A054106.
Central diagonal T(2n+1,n+1) appears to be A006134.
Central diagonal T(2n,n) appears to be A079309.
For partitions instead of subsets we have A359901, row sums A325347.
A000975 counts subsets with integer median.
A007318 counts subsets by length, A359893 by twice median.

Programs

  • Mathematica
    CoefficientList[CoefficientList[Series[1/(1 - (1 + y)*x)/(1 - y*x^2), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Oct 10 2017 *)

Formula

G.f.: 1/(1-(1+y)*x)/(1-y*x^2). - Vladeta Jovovic, Oct 12 2003

Extensions

More terms from James Sellers

A361801 Number of nonempty subsets of {1..n} with median n/2.

Original entry on oeis.org

0, 0, 1, 1, 4, 4, 14, 14, 49, 49, 175, 175, 637, 637, 2353, 2353, 8788, 8788, 33098, 33098, 125476, 125476, 478192, 478192, 1830270, 1830270, 7030570, 7030570, 27088870, 27088870, 104647630, 104647630, 405187825, 405187825, 1571990935, 1571990935
Offset: 0

Views

Author

Gus Wiseman, Apr 07 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The subset {1,2,3,5} of {1..5} has median 5/2, so is counted under a(5).
The subset {2,3,5} of {1..6} has median 6/2, so is counted under a(6).
The a(0) = 0 through a(7) = 14 subsets:
  .  .  {1}  {1,2}  {2}      {1,4}      {3}          {1,6}
                    {1,3}    {2,3}      {1,5}        {2,5}
                    {1,2,3}  {1,2,3,4}  {2,4}        {3,4}
                    {1,2,4}  {1,2,3,5}  {1,3,4}      {1,2,5,6}
                                        {1,3,5}      {1,2,5,7}
                                        {1,3,6}      {1,3,4,5}
                                        {2,3,4}      {1,3,4,6}
                                        {2,3,5}      {1,3,4,7}
                                        {2,3,6}      {2,3,4,5}
                                        {1,2,4,5}    {2,3,4,6}
                                        {1,2,4,6}    {2,3,4,7}
                                        {1,2,3,4,5}  {1,2,3,4,5,6}
                                        {1,2,3,4,6}  {1,2,3,4,5,7}
                                        {1,2,3,5,6}  {1,2,3,4,6,7}
		

Crossrefs

A bisection is A079309.
The case with n's has bisection A057552.
The case without n's is A100066, bisection A006134.
A central diagonal of A231147.
A version for partitions is A361849.
For mean instead of median we have A362046.
A000975 counts subsets with integer median, for mean A327475.
A007318 counts subsets by length.
A013580 appears to count subsets by median, by mean A327481.
A360005(n)/2 represents the median statistic for partitions.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Median[#]==n/2&]],{n,0,10}]

Formula

a(n) = A079309(floor(n/2)). - Alois P. Heinz, Apr 11 2023

A362046 Number of nonempty subsets of {1..n} with mean n/2.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 9, 8, 25, 23, 75, 68, 235, 213, 759, 695, 2521, 2325, 8555, 7941, 29503, 27561, 103129, 96861, 364547, 344003, 1300819, 1232566, 4679471, 4449849, 16952161, 16171117, 61790441, 59107889, 226451035, 217157068, 833918839, 801467551, 3084255127
Offset: 0

Views

Author

Gus Wiseman, Apr 12 2023

Keywords

Examples

			The a(2) = 1 through a(7) = 8 subsets:
  {1}  {1,2}  {2}      {1,4}      {3}          {1,6}
              {1,3}    {2,3}      {1,5}        {2,5}
              {1,2,3}  {1,2,3,4}  {2,4}        {3,4}
                                  {1,2,6}      {1,2,4,7}
                                  {1,3,5}      {1,2,5,6}
                                  {2,3,4}      {1,3,4,6}
                                  {1,2,3,6}    {2,3,4,5}
                                  {1,2,4,5}    {1,2,3,4,5,6}
                                  {1,2,3,4,5}
		

Crossrefs

Using range 0..n gives A070925.
Including the empty set gives A133406.
Even bisection is A212352.
For median instead of mean we have A361801, the doubling of A079309.
A version for partitions is A361853, for median A361849.
A000980 counts nonempty subsets of {1..2n-1} with mean n.
A007318 counts subsets by length.
A067538 counts partitions with integer mean, strict A102627.
A231147 appears to count subsets by median, full-steps A013580.
A327475 counts subsets with integer mean, A000975 integer median.
A327481 counts subsets by integer mean.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Mean[#]==n/2&]],{n,0,15}]

Formula

a(n) = (A070925(n) - 1)/2.
a(n) = A133406(n) - 1.
a(2n) = A212352(n) = A000980(n)/2 - 1.

A361863 Number of set partitions of {1..n} such that the median of medians of the blocks is (n+1)/2.

Original entry on oeis.org

1, 2, 3, 9, 26, 69, 335, 1018, 6629, 22805, 182988, 703745
Offset: 1

Views

Author

Gus Wiseman, Apr 04 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
Since (n+1)/2 is the median of {1..n}, this sequence counts "transitive" set partitions.

Examples

			The a(1) = 1 through a(4) = 9 set partitions:
  {{1}}  {{12}}    {{123}}      {{1234}}
         {{1}{2}}  {{13}{2}}    {{12}{34}}
                   {{1}{2}{3}}  {{124}{3}}
                                {{13}{24}}
                                {{134}{2}}
                                {{14}{23}}
                                {{1}{23}{4}}
                                {{14}{2}{3}}
                                {{1}{2}{3}{4}}
The set partition {{1,4},{2,3}} has medians {5/2,5/2}, with median 5/2, so is counted under a(4).
The set partition {{1,3},{2,4}} has medians {2,3}, with median 5/2, so is counted under a(4).
		

Crossrefs

For mean instead of median we have A361910.
A000110 counts set partitions.
A000975 counts subsets with integer median, mean A327475.
A013580 appears to count subsets by median, A327481 by mean.
A325347 counts partitions w/ integer median, complement A307683.
A359893 and A359901 count partitions by median, odd-length A359902.
A360005 gives twice median of prime indices, distinct A360457.
A361864 counts set partitions with integer median of medians, means A361865.
A361866 counts set partitions with integer sum of medians, means A361911.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],(n+1)/2==Median[Median/@#]&]],{n,6}]

A361802 Irregular triangle read by rows where T(n,k) is the number of k-subsets of {-n+1,...,n} with sum 0, for k = 1,...,2n-1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 3, 6, 7, 5, 2, 1, 1, 4, 10, 16, 18, 14, 8, 3, 1, 1, 5, 15, 31, 46, 51, 43, 27, 12, 3, 1, 1, 6, 21, 53, 98, 139, 155, 134, 88, 43, 16, 4, 1, 1, 7, 28, 83, 184, 319, 441, 486, 424, 293, 161, 68, 21, 4, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2023

Keywords

Comments

Also the number of k-subsets of {1,...,2n} with mean n.

Examples

			Triangle begins:
   1
   1   1   1
   1   2   3   2   1
   1   3   6   7   5   2   1
   1   4  10  16  18  14   8   3   1
   1   5  15  31  46  51  43  27  12   3   1
   1   6  21  53  98 139 155 134  88  43  16   4   1
   1   7  28  83 184 319 441 486 424 293 161  68  21   4   1
Row n = 3 counts the following subsets:
  {0}  {-1,1}  {-1,0,1}   {-2,-1,0,3}  {-2,-1,0,1,2}
       {-2,2}  {-2,0,2}   {-2,-1,1,2}
               {-2,-1,3}
		

Crossrefs

Row lengths are A005408.
Row sums are A212352.
A007318 counts subsets by length.
A067538 counts partitions with integer mean.
A231147 counts subsets by median.
A327475 counts subsets with integer mean, median A000975.
A327481 counts subsets by mean.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[-n+1,n],{k}],Total[#]==0&]],{n,6},{k,2n-1}]
Showing 1-7 of 7 results.