cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361706 Inverse Moebius transform applied twice to primes.

Original entry on oeis.org

2, 7, 9, 19, 15, 37, 21, 50, 39, 65, 35, 116, 45, 91, 87, 134, 63, 174, 71, 200, 125, 155, 87, 322, 125, 197, 172, 282, 113, 383, 131, 349, 217, 271, 213, 555, 161, 311, 267, 546, 183, 555, 195, 482, 402, 379, 215, 857, 267, 546, 369, 602, 245, 768, 349, 774, 421, 503, 281, 1204, 287, 561, 582, 875, 425
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 21 2023

Keywords

Comments

Dirichlet convolution of primes with the number of divisors function.

Crossrefs

Programs

  • Maple
    a:= (proc(p) proc(n) uses numtheory;
           add(p(d), d=divisors(n))
         end end@@2)(ithprime):
    seq(a(n), n=1..100);  # Alois P. Heinz, Mar 23 2023
  • Mathematica
    Table[Sum[DivisorSigma[0, n/d] Prime[d], {d, Divisors[n]}], {n, 1, 65}]
  • PARI
    a(n) = sumdiv(n, d, numdiv(n/d)*prime(d)); \\ Michel Marcus, Mar 23 2023

Formula

G.f.: Sum_{i>=1} Sum_{j>=1} prime(i) * x^(i*j) / (1 - x^(i*j)).
a(n) = Sum_{d|n} A000005(n/d) * prime(d).