A361706 Inverse Moebius transform applied twice to primes.
2, 7, 9, 19, 15, 37, 21, 50, 39, 65, 35, 116, 45, 91, 87, 134, 63, 174, 71, 200, 125, 155, 87, 322, 125, 197, 172, 282, 113, 383, 131, 349, 217, 271, 213, 555, 161, 311, 267, 546, 183, 555, 195, 482, 402, 379, 215, 857, 267, 546, 369, 602, 245, 768, 349, 774, 421, 503, 281, 1204, 287, 561, 582, 875, 425
Offset: 1
Keywords
Links
- Winston de Greef, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane, Transforms
Programs
-
Maple
a:= (proc(p) proc(n) uses numtheory; add(p(d), d=divisors(n)) end end@@2)(ithprime): seq(a(n), n=1..100); # Alois P. Heinz, Mar 23 2023
-
Mathematica
Table[Sum[DivisorSigma[0, n/d] Prime[d], {d, Divisors[n]}], {n, 1, 65}]
-
PARI
a(n) = sumdiv(n, d, numdiv(n/d)*prime(d)); \\ Michel Marcus, Mar 23 2023
Formula
G.f.: Sum_{i>=1} Sum_{j>=1} prime(i) * x^(i*j) / (1 - x^(i*j)).
a(n) = Sum_{d|n} A000005(n/d) * prime(d).
Comments