A361715 a(n) = Sum_{k = 0..n-1} binomial(n,k)^2*binomial(n+k-1,k).
0, 1, 9, 82, 745, 6876, 64764, 621860, 6070761, 60085720, 601493134, 6078225792, 61907445340, 634751002718, 6545478537810, 67830084149832, 705950951578089, 7375212511115184, 77310175072063914, 812839577957617640, 8569327793354169870, 90562666708303706642, 959212007563384494522, 10180245921386807485152
Offset: 0
Programs
-
Maple
seq( add( binomial(n,k)^2*binomial(n+k-1,k), k = 0..n-1), n = 0..25); #faster alternative program P(n) := 145*n^4 - 1217*n^3 + 3763*n^2 - 5079*n + 2532: Q(n) := (n - 1)*(n - 2)*(2175*n^6 - 20140*n^5 + 73132*n^4 - 131786*n^3 + 122789*n^2 - 55626*n + 9936): R(n) := (n - 2)*(6235*n^7 - 67846*n^6 + 304860*n^5 - 731294*n^4 + 1008701*n^3 - 798060*n^2 + 335340*n - 58320): a := proc(n) option remember; if n = 0 then 0 elif n = 1 then 1 elif n = 2 then 9 else (Q(n)*a(n-1) - R(n)*a(n-2) - 2*(n - 1)*(n - 3)^2*(2*n - 5)*P(n+1)*a(n-3))/((n - 1)*(n - 2)*n^2*P(n)) end if; end: seq(a(n), n = 0..25); # Alternative: A361715 := n -> hypergeom([-n, -n, n], [1, 1], 1) - binomial(2*n-1, n): seq(simplify(A361715(n)), n = 0..23); # Peter Luschny, Mar 27 2023
-
Mathematica
Table[Sum[Binomial[n,k]^2 Binomial[n+k-1,k],{k,0,n-1}],{n,0,30}] (* Harvey P. Dale, Nov 01 2023 *)
Formula
a(n) = A103882(n) - binomial(2*n-1,n) = (3*A005258(n) + A005258(n-1))/5 - binomial(2*n-1,n) for n >= 1.
a(n) ~ sqrt(sqrt(5)/10 + 1/4)*(5*sqrt(5)/2 + 11/2)^n/(Pi*n)
P-recursive:
(n - 1)*(n - 2)*n^2*P(n)*a(n) = Q(n)*a(n - 1) - R(n)*a(n-2) - 2*(n - 1)*(n - 3)^2*(2*n - 5)*P(n+1)*a(n-3) with a(0) = 0, a(1) = 1 and a(2) = 9 and where
P(n) = 145*n^4 - 1217*n^3 + 3763*n^2 - 5079*n + 2532,
Q(n) = (n - 1)*(n - 2)*(2175*n^6 - 20140*n^5 + 73132*n^4 - 131786*n^3 + 122789*n^2 - 55626*n + 9936) and
R(n) = (n - 2)*(6235*n^7 - 67846*n^6 + 304860*n^5 - 731294*n^4 + 1008701*n^3 - 798060*n^2 + 335340*n - 58320).
a(n) = hypergeom([-n, -n, n], [1, 1], 1) - binomial(2*n-1, n). This is another way to write the first formula. - Peter Luschny, Mar 27 2023
Comments