cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A361729 Diagonal of rational function 1/(1 - (1 + x*y*z) * (x^2 + y^2 + z^2)).

Original entry on oeis.org

1, 0, 6, 18, 108, 546, 3030, 16920, 96480, 557460, 3255426, 19186020, 113905386, 680583708, 4088506428, 24677473884, 149564145060, 909784736388, 5552109174084, 33981183515664, 208523253915306, 1282621025382840, 7906367632595328, 48832556909752044
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (3*k)!/k!^3*binomial(3*k, n-2*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} (3*k)!/k!^3 * binomial(3*k,n-2*k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: (n-1)*n^2*a(n) = -(n-1)^2*n*a(n-1) + 3*(n-1)*(3*n - 4)*(3*n - 2)*a(n-2) + 12*(9*n^3 - 36*n^2 + 41*n - 9)*a(n-3) + 18*(3*n - 8)*(3*n^2 - 7*n + 1)*a(n-4) + 12*(9*n^3 - 54*n^2 + 80*n - 5)*a(n-5) + 3*n*(3*n - 13)*(3*n - 8)*a(n-6).
a(n) ~ c * d^n / n, where d = 6.45021022459140188868150633620495776554217848977385402261531271... is the real root of the equation -27 - 81*d - 81*d^2 - 27*d^3 + d^5 = 0 and c = sqrt(3)/(2*Pi) = 0.275664447710896024755663249156484720698693240183320326399... (End)

A361730 Diagonal of rational function 1/(1 - (1 + x*y*z) * (x^3 + y^3 + z^3)).

Original entry on oeis.org

1, 0, 0, 6, 18, 18, 96, 540, 1350, 3480, 16470, 61020, 175860, 627480, 2498580, 8520876, 28563570, 106917300, 393495396, 1369171188, 4914119826, 18191218716, 65741140080, 235643531508, 862450963704, 3163777886412, 11484836808588, 41875694151720
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (3*k)!/k!^3*binomial(3*k, n-3*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} (3*k)!/k!^3 * binomial(3*k,n-3*k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: (n-1)*n^2*a(n) = -(n-1)^2*n*a(n-1) + 27*(n-2)*(n-1)^2*a(n-3) + 108*(n-2)*(n^2 - 3*n + 1)*a(n-4) + 54*(3*n^3 - 18*n^2 + 28*n - 5)*a(n-5) + 108*(n^3 - 7*n^2 + 12*n - 1)*a(n-6) + 27*(n-5)*(n-3)*n*a(n-7).
a(n) ~ sqrt(3) * ((3 + sqrt(21))/2)^n / (2*Pi*n). (End)

A361737 Diagonal of rational function 1/(1 - (x + y + z + x^2*y*z)).

Original entry on oeis.org

1, 6, 96, 1860, 39780, 900396, 21146496, 509697936, 12523921740, 312324904320, 7881117611796, 200784546041976, 5156135919980136, 133299228503087640, 3465901878247744920, 90563401722349627920, 2376642701449937741580, 62607393746503658100360
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(3*k)!/k!^3 * Binomial[k,n-k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 23 2023 *)
  • PARI
    a(n) = sum(k=0, n, (3*k)!/k!^3*binomial(k, n-k));

Formula

a(n) = Sum_{k=0..n} (3*k)!/k!^3 * binomial(k,n-k).
a(n) ~ sqrt(3) * ((27 + 3*sqrt(93))/2)^n / (2*Pi*n). - Vaclav Kotesovec, Mar 23 2023
Showing 1-3 of 3 results.