cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A361729 Diagonal of rational function 1/(1 - (1 + x*y*z) * (x^2 + y^2 + z^2)).

Original entry on oeis.org

1, 0, 6, 18, 108, 546, 3030, 16920, 96480, 557460, 3255426, 19186020, 113905386, 680583708, 4088506428, 24677473884, 149564145060, 909784736388, 5552109174084, 33981183515664, 208523253915306, 1282621025382840, 7906367632595328, 48832556909752044
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (3*k)!/k!^3*binomial(3*k, n-2*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} (3*k)!/k!^3 * binomial(3*k,n-2*k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: (n-1)*n^2*a(n) = -(n-1)^2*n*a(n-1) + 3*(n-1)*(3*n - 4)*(3*n - 2)*a(n-2) + 12*(9*n^3 - 36*n^2 + 41*n - 9)*a(n-3) + 18*(3*n - 8)*(3*n^2 - 7*n + 1)*a(n-4) + 12*(9*n^3 - 54*n^2 + 80*n - 5)*a(n-5) + 3*n*(3*n - 13)*(3*n - 8)*a(n-6).
a(n) ~ c * d^n / n, where d = 6.45021022459140188868150633620495776554217848977385402261531271... is the real root of the equation -27 - 81*d - 81*d^2 - 27*d^3 + d^5 = 0 and c = sqrt(3)/(2*Pi) = 0.275664447710896024755663249156484720698693240183320326399... (End)

A361728 Diagonal of rational function 1/(1 - (1 + x*y*z) * (x + y + z)).

Original entry on oeis.org

1, 6, 108, 2238, 51126, 1234836, 30933846, 795124008, 20832161238, 553908550416, 14901620938668, 404737904238768, 11080360585597974, 305375448989901564, 8464333256181647028, 235772833122673888788, 6595763835075158604618
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(3*k)!/k!^3 * Binomial[3*k,n-k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 22 2023 *)
  • PARI
    a(n) = sum(k=0, n, (3*k)!/k!^3*binomial(3*k, n-k));

Formula

a(n) = Sum_{k=0..n} (3*k)!/k!^3 * binomial(3*k,n-k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: (n-1)*n^2*a(n) = 2*(n-1)*(13*n^2 - 13*n + 3)*a(n-1) + 12*(9*n^3 - 27*n^2 + 23*n - 3)*a(n-2) + 18*(9*n^3 - 36*n^2 + 38*n - 3)*a(n-3) + 12*(9*n^3 - 45*n^2 + 56*n - 2)*a(n-4) + 3*n*(3*n - 11)*(3*n - 7)*a(n-5).
a(n) ~ c * d^n / n, where d = 29.8094342438507627973286122946283855557156321402886102401458498265933891... is the real root of the equation -27 - 81*d - 81*d^2 - 27*d^3 + d^4 = 0 and c = sqrt(3)/(2*Pi) = 0.27566444771089602475566324915648472069869324018332... (End)

A361739 Diagonal of rational function 1/(1 - (x^3 + y^3 + z^3 + x^4*y*z)).

Original entry on oeis.org

1, 0, 0, 6, 6, 0, 90, 180, 90, 1680, 5040, 5040, 36330, 138600, 207900, 895356, 3818430, 7567560, 24720696, 106702596, 258053796, 742135680, 3050807760, 8483450976, 23450218506, 89691647760, 273414861720, 760735601340, 2713845780360, 8733512193120, 24957399366900
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (3*k)!/k!^3*binomial(k, n-3*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} (3*k)!/k!^3 * binomial(k,n-3*k).
From Vaclav Kotesovec, Mar 23 2023: (Start)
Recurrence: (n-1)*n^2*a(n) = -(n-1)^2*n*a(n-1) + 27*(n-2)*(n-1)^2*a(n-3) + 18*(n-2)*(3*n^2 - 9*n + 2)*a(n-4) + 3*n*(3*n - 11)*(3*n - 7)*a(n-5).
a(n) ~ sqrt(3) * d^n / (2*Pi*n), where d = 3.278393896770041178744966998018587... is the positive real root of the equation d^4 - 27*d - 27 = 0. (End)
Showing 1-3 of 3 results.