cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A361730 Diagonal of rational function 1/(1 - (1 + x*y*z) * (x^3 + y^3 + z^3)).

Original entry on oeis.org

1, 0, 0, 6, 18, 18, 96, 540, 1350, 3480, 16470, 61020, 175860, 627480, 2498580, 8520876, 28563570, 106917300, 393495396, 1369171188, 4914119826, 18191218716, 65741140080, 235643531508, 862450963704, 3163777886412, 11484836808588, 41875694151720
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (3*k)!/k!^3*binomial(3*k, n-3*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} (3*k)!/k!^3 * binomial(3*k,n-3*k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: (n-1)*n^2*a(n) = -(n-1)^2*n*a(n-1) + 27*(n-2)*(n-1)^2*a(n-3) + 108*(n-2)*(n^2 - 3*n + 1)*a(n-4) + 54*(3*n^3 - 18*n^2 + 28*n - 5)*a(n-5) + 108*(n^3 - 7*n^2 + 12*n - 1)*a(n-6) + 27*(n-5)*(n-3)*n*a(n-7).
a(n) ~ sqrt(3) * ((3 + sqrt(21))/2)^n / (2*Pi*n). (End)

A361728 Diagonal of rational function 1/(1 - (1 + x*y*z) * (x + y + z)).

Original entry on oeis.org

1, 6, 108, 2238, 51126, 1234836, 30933846, 795124008, 20832161238, 553908550416, 14901620938668, 404737904238768, 11080360585597974, 305375448989901564, 8464333256181647028, 235772833122673888788, 6595763835075158604618
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(3*k)!/k!^3 * Binomial[3*k,n-k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 22 2023 *)
  • PARI
    a(n) = sum(k=0, n, (3*k)!/k!^3*binomial(3*k, n-k));

Formula

a(n) = Sum_{k=0..n} (3*k)!/k!^3 * binomial(3*k,n-k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: (n-1)*n^2*a(n) = 2*(n-1)*(13*n^2 - 13*n + 3)*a(n-1) + 12*(9*n^3 - 27*n^2 + 23*n - 3)*a(n-2) + 18*(9*n^3 - 36*n^2 + 38*n - 3)*a(n-3) + 12*(9*n^3 - 45*n^2 + 56*n - 2)*a(n-4) + 3*n*(3*n - 11)*(3*n - 7)*a(n-5).
a(n) ~ c * d^n / n, where d = 29.8094342438507627973286122946283855557156321402886102401458498265933891... is the real root of the equation -27 - 81*d - 81*d^2 - 27*d^3 + d^4 = 0 and c = sqrt(3)/(2*Pi) = 0.27566444771089602475566324915648472069869324018332... (End)

A361738 Diagonal of rational function 1/(1 - (x^2 + y^2 + z^2 + x^3*y*z)).

Original entry on oeis.org

1, 0, 6, 6, 90, 180, 1770, 5040, 39690, 140280, 964656, 3922380, 24755346, 110486376, 660153780, 3137330196, 18103340970, 89794566576, 506892467796, 2589310074780, 14419819659960, 75181803891480, 415298937771900, 2196704341517400, 12078576672927570
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(3*k)!/k!^3 * Binomial[k,n-2*k], {k,0,n/2}], {n,0,20}] (* Vaclav Kotesovec, Mar 23 2023 *)
  • PARI
    a(n) = sum(k=0, n\2, (3*k)!/k!^3*binomial(k, n-2*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} (3*k)!/k!^3 * binomial(k,n-2*k).
From Vaclav Kotesovec, Mar 23 2023: (Start)
Recurrence: (n-1)*n^2*a(n) = -(n-1)^2*n*a(n-1) + 3*(n-1)*(3*n - 4)*(3*n - 2)*a(n-2) + 18*(n-2)*(3*n^2 - 6*n + 1)*a(n-3) + 27*(n-3)*(n-2)*n*a(n-4).
a(n) ~ sqrt(3) * (6*cos(Pi/9))^n / (2*Pi*n). (End)
Showing 1-3 of 3 results.