cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361732 a(n) = [x^n] (x^5 + 5*x^4 + 4*x^3 - 3*x + 1)/(x^2 + 2*x - 1)^2.

Original entry on oeis.org

1, 1, 2, 6, 20, 60, 174, 490, 1352, 3672, 9850, 26158, 68892, 180180, 468454, 1211730, 3120400, 8004144, 20460402, 52139990, 132502180, 335882988, 849507230, 2144114234, 5401408344, 13583493000, 34105191146, 85504030974, 214070361260, 535269125508, 1336814464470
Offset: 0

Views

Author

Peter Luschny, Mar 23 2023

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n < 4 then return [1, 1, 2, 6][n + 1] fi;
    (n*(n - 1)*a(n - 2) + 2*n*(n - 2)*a(n - 1)) / ((n - 2)*(n - 1)) end:
    seq(a(n), n = 0..30);
    # Alternative:
    F := n -> add(combinat:-fibonacci(n - 1, 2), k = 0..n-1):
    a := n -> F(n) + ifelse(n < 2, 1, 0): seq(a(n), n=0..30);
    # Using the generating function:
    ogf := (x^5 + 5*x^4 + 4*x^3 - 3*x + 1)/(x^2 + 2*x - 1)^2:
    ser := series(ogf, x, 40): seq(coeff(ser, x, n), n = 0..30);
    # Or:
    a := n -> ifelse(n < 2, 1, 2^(n-2)*n*hypergeom([(3-n)/2, (2-n)/2], [2-n], -1));
    seq(simplify(a(n)), n = 0..30);  # Peter Luschny, Apr 19 2024

Formula

a(n) = (n*(n - 1)*a(n-2) + 2*n*(n - 2)*a(n-1)) / ((n - 2)*(n - 1)) for n >= 4.
a(n) = Sum_{k=0..n-1} F(n-1, 2) for n >= 2, where F(n, x) is the n-th Fibonacci polynomial.
a(n) = n*A000129(n-1), a(0)=1, a(1)=1. - Vladimir Kruchinin, Apr 19 2024
a(n) = 2^(n-2)*n*hypergeom([(3-n)/2, (2-n)/2], [2-n], -1) for n >= 2. - Peter Luschny, Apr 19 2024