cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A367211 Triangular array read by rows: T(n, k) = binomial(n, k) * A000129(n - k) for 0 <= k < n.

Original entry on oeis.org

1, 2, 2, 5, 6, 3, 12, 20, 12, 4, 29, 60, 50, 20, 5, 70, 174, 180, 100, 30, 6, 169, 490, 609, 420, 175, 42, 7, 408, 1352, 1960, 1624, 840, 280, 56, 8, 985, 3672, 6084, 5880, 3654, 1512, 420, 72, 9, 2378, 9850, 18360, 20280, 14700, 7308, 2520, 600, 90, 10
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2023

Keywords

Comments

T(n, k) are the coefficients of the polynomials p(1, x) = 1, p(2, x) = 2 + 2*x, p(n, x) = u*p(n-1, x) + v*p(n-2, x) for n >= 3, where u = p(2, x), v = 1 - 2*x - x^2.
Because (p(n, x)) is a strong divisibility sequence, for each integer k, the sequence (p(n, k)) is a strong divisibility sequence of integers.

Examples

			First nine rows:
  [n\k] 0     1     2     3     4     5    6   7  8
  [1]   1;
  [2]   2     2;
  [3]   5     6    3;
  [4]  12    20    12     4;
  [5]  29    60    50    20     5;
  [6]  70   174   180   100    30     6;
  [7] 169   490   609   420   175    42   7;
  [8] 408  1352  1960  1624   840   280   56   8;
  [9] 985  3672  6084  5880  3654  1512  420  72  9;
.
Row 4 represents the polynomial p(4,x) = 12 + 20 x + 12 x^2 + 4 x^3, so that (T(4,k)) = (12, 20, 12, 4), k = 0..3.
		

Crossrefs

Cf. A000129 (column 1, Pell numbers), A361732 (column 2), A000027 (T(n,n-1)), A007070 (row sums, p(n,1)), A077957 (alternating row sums, p(n,-1)), A081179 (p(n,2)), A077985 (p(n,-2)), A081180 (p(n,3)), A007070 (p(n,-3)), A081182 (p(n,4)), A094440, A367208, A367209, A367210.

Programs

  • Maple
    P := proc(n) option remember; ifelse(n <= 1, n, 2*P(n - 1) + P(n - 2)) end:
    T := (n, k) -> P(n - k) * binomial(n, k):
    for n from 1 to 9 do [n], seq(T(n, k), k = 0..n-1) od;
    # (after Werner Schulte)  Peter Luschny, Nov 24 2023
  • Mathematica
    p[1, x_] := 1; p[2, x_] := 2 + 2 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    (* Or: *)
    T[n_, k_] := Module[{P},
      P[m_] := P[m] = If[m <= 1, m, 2*P[m - 1] + P[m - 2]];
      P[n - k] * Binomial[n, k] ];
    Table[T[n, k], {n, 1, 9}, {k, 0, n - 1}]  (* Peter Luschny, Mar 07 2025 *)

Formula

p(n, x) = u*p(n-1, x) + v*p(n-2, x) for n >= 3, where p(1, x) = 1, p(2, x) = 2 + 2*x, u = p(2, x), and v = 1 - 2*x - x^2.
p(n, x) = k*(b^n - c^n), where k = sqrt(1/8), b = x + 1 - sqrt(2), c = x + 1 + sqrt(2).
From Werner Schulte, Nov 24 2023 and Nov 25 2023: (Start)
The row polynomials p(n, x) = Sum_{k=0..n-1} T(n, k) * x^k satisfy the equation p'(n, x) = n * p(n-1, x) where p' is the first derivative of p.
T(n, k) = T(n-1, k-1) * n / k for 0 < k < n and T(n, 0) = A000129(n) for n > 0.
T(n, k) = A000129(n-k) * binomial(n, k) for 0 <= k < n.
G.f.: t / (1 - (2+2*x) * t - (1-2*x-x^2) * t^2). (End)

Extensions

New name using a formula of Werner Schulte by Peter Luschny, Mar 07 2025

A026937 a(n) = Sum_{k=0..n} (k+1)*T(n, n-k), where T is given by A008288.

Original entry on oeis.org

1, 3, 10, 30, 87, 245, 676, 1836, 4925, 13079, 34446, 90090, 234227, 605865, 1560200, 4002072, 10230201, 26069995, 66251090, 167941494, 424753615, 1072057117, 2700704172, 6791746500, 17052595573, 42752015487, 107035180630, 267634562754, 668407232235, 1667467065425
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1, 3, 10, 30]; [n le 4 select I[n] else 4*Self(n-1)-2*Self(n-2)-4*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 20 2012
    
  • Maple
    with (combinat):seq(add(fibonacci(n,2),k=0..n)/2,n=1..27); # Zerinvary Lajos, May 25 2008
  • Mathematica
    CoefficientList[Series[(1-x)/(1-2x-x^2)^2,{x,0,40}],x]  (* Harvey P. Dale, Mar 22 2011 *)
    LinearRecurrence[{4,-2,-4,-1},{1,3,10,30},40] (* Vincenzo Librandi, Jun 20 2012 *)
    Table[(1/2)*(n+2)*Fibonacci[n+1, 2], {n, 0, 40}] (* G. C. Greubel, May 25 2021 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-x)/(1-2*x-x^2)^2) \\ Altug Alkan, Sep 20 2018
    
  • PARI
    a(n) = my(w=quadgen(8)); (n/8)*((2+w)*(1+w)^n - (w-2)*(1-w)^n); \\ Michel Marcus, Jul 31 2023
    
  • Sage
    [(1/2)*(n+2)*lucas_number1(n+1,2,-1) for n in (0..40)] # G. C. Greubel, May 25 2021

Formula

G.f.: (1-x)/(1 - 2*x - x^2)^2.
a(n) = Sum_{k=0..n+1} A000129(k)*A001333(n+1-k). - Graeme McRae, Aug 03 2006 and Michel Marcus, Aug 01 2023
a(n) = A006645(n+2) - A006645(n+1). - R. J. Mathar, Jan 27 2011
a(n) = 4*a(n-1) - 2*a(n-2) - 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 20 2012
a(n) = ((n+2)/2)*A000129(n+1). - G. C. Greubel, May 25 2021
a(n) = ((n+2)/8)*((sqrt(2) + 2)*(1 + sqrt(2))^n - (sqrt(2) - 2)*(1 - sqrt(2))^n). - Peter Luschny, Jul 31 2023
a(n) = A361732(n+2)/2. - R. J. Mathar, Jun 30 2025
Showing 1-2 of 2 results.