A361884 a(n) = (1/n) * Sum_{k = 0..n} (-1)^(n+k) * (n + 2*k) * binomial(n+k-1,k)^3.
2, 66, 2540, 110530, 5197752, 257490156, 13238524728, 699822144450, 37800431926400, 2077184897317816, 115757876008359312, 6526739641107783916, 371641758587326581200, 21341134886976332825400, 1234474507620634579565040
Offset: 1
Programs
-
Maple
seq( (1/n)*add((-1)^(n+k) * (n + 2*k) * binomial(n+k-1, n-1)^3, k = 0..n), n = 1..20);
-
Mathematica
Table[Sum[(-1)^(n+k) * (n + 2*k) * Binomial[n+k-1,k]^3, {k,0,n}]/n, {n,1,20}] (* Vaclav Kotesovec, Mar 29 2023 *)
-
PARI
a(n) = (1/n) * sum(k = 0, n, (-1)^(n+k) * (n + 2*k) * binomial(n+k-1,k)^3); \\ Michel Marcus, Mar 30 2023
Formula
a(n) ~ 2^(6*n) / (3 * Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Mar 29 2023
Comments