A362007 Fourth Lie-Betti number of a path graph on n vertices.
0, 0, 3, 16, 48, 107, 203, 347, 551, 828, 1192, 1658, 2242, 2961, 3833, 4877, 6113, 7562, 9246, 11188, 13412, 15943, 18807, 22031, 25643, 29672, 34148, 39102, 44566, 50573, 57157, 64353, 72197, 80726, 89978, 99992, 110808
Offset: 1
Links
- Marco Aldi and Samuel Bevins, L_oo-algebras and hypergraphs, arXiv:2212.13608 [math.CO], 2022. See page 9.
- Meera Mainkar, Graphs and two step nilpotent Lie algebras, arXiv:1310.3414 [math.DG], 2013. See page 1.
- Eric Weisstein's World of Mathematics, Path Graph.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Python
def A362007(n): values = [0,0,3] for i in range(4, n+1): result = (i**4 + 18*i**3 - 97*i**2 + 174*i - 168)/24 values.append(int(result)) return values
Formula
a(1) = a(2) = 0, a(3) = 3, a(n) = (n^4 + 18*n^3 - 97*n^2 + 174*n - 168)/24 for n >= 4.
a(n) = A011379(n-3) + A006002(n-4) + A001105(n-3) + A056106(n-2) + A000027(n-3) + A000332(n-3) + A000217(n-5) + A000027(n-4) for n >= 5.
From Stefano Spezia, Mar 02 2025: (Start)
G.f.: x^2*(3 + x - 2*x^2 - 3*x^3 + 3*x^4 - x^5)/(1 - x)^5.
E.g.f.: (12*(6 + 4*x + x^2) - exp(x)*(72 - 24*x - 36*x^2 - 28*x^3 - x^4))/24. (End)
Extensions
a(34) and Python program corrected by Robert C. Lyons, Apr 17 2023
Comments