cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362007 Fourth Lie-Betti number of a path graph on n vertices.

Original entry on oeis.org

0, 0, 3, 16, 48, 107, 203, 347, 551, 828, 1192, 1658, 2242, 2961, 3833, 4877, 6113, 7562, 9246, 11188, 13412, 15943, 18807, 22031, 25643, 29672, 34148, 39102, 44566, 50573, 57157, 64353, 72197, 80726, 89978, 99992, 110808
Offset: 1

Views

Author

Samuel J. Bevins, Apr 05 2023

Keywords

Comments

Sequence T(n,4) in A360571.

Crossrefs

Cf. A360571 (path graph triangle), A088459 (second Lie-Betti number of path graphs), A361230.

Programs

  • Python
    def A362007(n):
        values = [0,0,3]
        for i in range(4, n+1):
            result = (i**4 + 18*i**3 - 97*i**2 + 174*i - 168)/24
            values.append(int(result))
        return values

Formula

a(1) = a(2) = 0, a(3) = 3, a(n) = (n^4 + 18*n^3 - 97*n^2 + 174*n - 168)/24 for n >= 4.
a(n) = A011379(n-3) + A006002(n-4) + A001105(n-3) + A056106(n-2) + A000027(n-3) + A000332(n-3) + A000217(n-5) + A000027(n-4) for n >= 5.
From Stefano Spezia, Mar 02 2025: (Start)
G.f.: x^2*(3 + x - 2*x^2 - 3*x^3 + 3*x^4 - x^5)/(1 - x)^5.
E.g.f.: (12*(6 + 4*x + x^2) - exp(x)*(72 - 24*x - 36*x^2 - 28*x^3 - x^4))/24. (End)

Extensions

a(34) and Python program corrected by Robert C. Lyons, Apr 17 2023