A362147 Numbers that are not cubefull.
2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84
Offset: 1
Keywords
Examples
2|24 and 2^3|24, but 3|24 and 3^3 does not divide 24, so 24 is a term.
Crossrefs
Programs
-
Mathematica
Select[Range[2, 100], Min[FactorInteger[#][[;; , 2]]] < 3 &] (* Amiram Eldar, Apr 09 2023 *)
-
PARI
isok(k) = (k!=1) && (vecmin(factor(k)[, 2])<=2); \\ Michel Marcus, Apr 12 2023
-
Python
from math import gcd from sympy import integer_nthroot, factorint def A362147(n): def f(x): c = n for w in range(1,integer_nthroot(x,5)[0]+1): if all(d<=1 for d in factorint(w).values()): for y in range(1,integer_nthroot(z:=x//w**5,4)[0]+1): if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()): c += integer_nthroot(z//y**4,3)[0] return c m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Nov 22 2024
Comments