A062838 Cubes of squarefree numbers.
1, 8, 27, 125, 216, 343, 1000, 1331, 2197, 2744, 3375, 4913, 6859, 9261, 10648, 12167, 17576, 24389, 27000, 29791, 35937, 39304, 42875, 50653, 54872, 59319, 68921, 74088, 79507, 97336, 103823, 132651, 148877, 166375, 185193, 195112, 205379, 226981, 238328
Offset: 1
Links
- Vincenzo Librandi and T. D. Noe, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Select[Range[70], SquareFreeQ]^3 (* Harvey P. Dale, Jul 20 2011 *)
-
PARI
for(n=1,35, if(issquarefree(n),print(n*n^2)))
-
PARI
a(n) = my(m, c); if(n<=1, n==1, c=1; m=1; while(c
Altug Alkan, Dec 03 2015 -
Python
from math import isqrt from sympy import mobius def A062838(n): def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) m, k = n, f(n) while m != k: m, k = k, f(k) return m**3 # Chai Wah Wu, Sep 11 2024
Formula
A055229(a(n)) = A005117(n) and A055229(m) < A005117(n) for m < a(n). - Reinhard Zumkeller, Apr 09 2010
a(n) = A005117(n)^3. - R. J. Mathar, Dec 03 2015
{a(n)} = {A225546(A000400(n)) : n >= 0}, where {a(n)} denotes the set of integers in the sequence. - Peter Munn, Oct 31 2019
Sum_{n>=1} 1/a(n) = zeta(3)/zeta(6) = 945*zeta(3)/Pi^6 (A157289). - Amiram Eldar, May 22 2020
Extensions
More terms from Dean Hickerson, Jul 24 2001
More terms from Vladimir Joseph Stephan Orlovsky, Aug 15 2008
Comments