A362193 Number of Grassmannian permutations of size n that avoid a pattern, sigma, where sigma is a pattern of size 6 with exactly one descent.
1, 1, 2, 5, 12, 27, 57, 113, 211, 373, 628, 1013, 1574, 2367, 3459, 4929, 6869, 9385, 12598, 16645, 21680, 27875, 35421, 44529, 55431, 68381, 83656, 101557, 122410, 146567, 174407, 206337, 242793, 284241, 331178, 384133, 443668, 510379, 584897
Offset: 0
Links
- Juan B. Gil and Jessica A. Tomasko, Restricted Grassmannian permutations, Enum. Combin. Appl. 2 (2022), no. 4, Article #S4PP6.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Maple
a:= n-> 1+(n-1)*n*(n+1)*(n*(n-5)+26)/120: seq(a(n), n=0..38); # Alois P. Heinz, Apr 12 2023
-
Mathematica
CoefficientList[Series[(1 - 5 x + 11 x^2 - 12 x^3 + 7 x^4 - x^5)/(1 - x)^6, {x, 0, 38}], x] (* Michael De Vlieger, Apr 12 2023 *)
-
PARI
a(n) = 1 + sum(i=3, 6, binomial(n, i-1)) \\ Andrew Howroyd, Apr 10 2023
Formula
a(n) = 1 + Sum_{i=2..5} binomial(n,i).
G.f.: (1-5*x+11*x^2-12*x^3+7*x^4-x^5)/(1-x)^6.
a(0) = 1; a(1) = 1; a(n) = 1 + A027660(n-2), n >= 2. - Omar E. Pol, Apr 12 2023
Comments