cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362193 Number of Grassmannian permutations of size n that avoid a pattern, sigma, where sigma is a pattern of size 6 with exactly one descent.

Original entry on oeis.org

1, 1, 2, 5, 12, 27, 57, 113, 211, 373, 628, 1013, 1574, 2367, 3459, 4929, 6869, 9385, 12598, 16645, 21680, 27875, 35421, 44529, 55431, 68381, 83656, 101557, 122410, 146567, 174407, 206337, 242793, 284241, 331178, 384133, 443668, 510379, 584897
Offset: 0

Views

Author

Jessica A. Tomasko, Apr 10 2023

Keywords

Comments

A permutation is said to be Grassmannian if it has at most one descent. The definition for sigma is a pattern of size 6 with exactly one descent. For example, sigma can be chosen to be 124356, 241356, 361245, 512346, etc.

Crossrefs

Programs

  • Maple
    a:= n-> 1+(n-1)*n*(n+1)*(n*(n-5)+26)/120:
    seq(a(n), n=0..38);  # Alois P. Heinz, Apr 12 2023
  • Mathematica
    CoefficientList[Series[(1 - 5 x + 11 x^2 - 12 x^3 + 7 x^4 - x^5)/(1 - x)^6, {x, 0, 38}], x] (* Michael De Vlieger, Apr 12 2023 *)
  • PARI
    a(n) = 1 + sum(i=3, 6, binomial(n, i-1)) \\ Andrew Howroyd, Apr 10 2023

Formula

a(n) = 1 + Sum_{i=2..5} binomial(n,i).
G.f.: (1-5*x+11*x^2-12*x^3+7*x^4-x^5)/(1-x)^6.
a(0) = 1; a(1) = 1; a(n) = 1 + A027660(n-2), n >= 2. - Omar E. Pol, Apr 12 2023