A362194 Number of Grassmannian permutations of size n that avoid a pattern, sigma, where sigma is a pattern of size 7 with exactly one descent.
1, 1, 2, 5, 12, 27, 58, 120, 239, 457, 838, 1475, 2498, 4083, 6462, 9934, 14877, 21761, 31162, 43777, 60440, 82139, 110034, 145476, 190027, 245481, 313886, 397567, 499150, 621587, 768182, 942618, 1148985, 1391809, 1676082, 2007293, 2391460, 2835163, 3345578, 3930512
Offset: 0
Links
- Juan B. Gil and Jessica Tomasko, Restricted Grassmannian permutations, ECA 2:4 (2022) Article S4PP6.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
PARI
a(n) = 1 + sum(i=2, 6, binomial(n,i)) \\ Andrew Howroyd, Apr 20 2023
Formula
a(n) = 1 + Sum_{i=2..6} binomial(n, i).
a(n) = A008859(n) - n.
G.f.: (1-6*x+16*x^2-23*x^3+19*x^4-8*x^5+2*x^6)/(1-x)^7.
E.g.f.: exp(x)*(720 + 360*x^2 + 120*x^3 + 30*x^4 + 6*x^5 + x^6)/720. - Stefano Spezia, Apr 20 2023
Comments