cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362243 a(n) = number of isomorphism classes of elliptic curves over the finite field of order prime(n).

Original entry on oeis.org

5, 8, 12, 18, 22, 32, 36, 42, 46, 60, 66, 80, 84, 90, 94, 108, 118, 128, 138, 142, 152, 162, 166, 180, 200, 204, 210, 214, 224, 228, 258, 262, 276, 282, 300, 306, 320, 330, 334, 348, 358, 368, 382, 392, 396, 402, 426, 450, 454, 464, 468, 478, 488, 502, 516, 526, 540, 546, 560, 564, 570
Offset: 1

Views

Author

Robin Visser, Apr 12 2023

Keywords

Examples

			For n = 1, the a(1) = 5 elliptic curves over F_2 can be given by their Weierstrass models as: y^2 + y = x^3, y^2 + y = x^3 + x, y^2 + y = x^3 + x + 1, y^2 + x*y = x^3 + 1, y^2 + x*y + y = x^3 + 1.
For n = 2, the a(2) = 8 elliptic curves over F_3 can be given by their Weierstrass models as: y^2 = x^3 + x, y^2 = x^3 + 2*x, y^2 = x^3 + 2*x + 1,  y^2 = x^3 + 2*x + 2,  y^2 = x^3 + x^2 + 1, y^2 = x^3 + x^2 + 2, y^2 = x^3 + 2*x^2 + 1, y^2 = x^3 + 2*x^2 + 2.
For n = 3, the a(3) = 12 elliptic curves over F_5 can be given by their Weierstrass models as: y^2 = x^3 + 1, y^2 = x^3 + 2, y^2 = x^3 + x, y^2 = x^3 + x + 1, y^2 = x^3 + x + 2, y^2 = x^3 + 2*x, y^2 = x^3 + 2*x + 1, y^2 = x^3 + 3*x, y^2 = x^3 + 3*x + 2, y^2 = x^3 + 4*x, y^2 = x^3 + 4*x + 1, y^2 = x^3 + 4*x + 2.
		

Programs

  • Mathematica
    A362243list[nmax_]:=Map[2#+{6,1,2,0,2,0,4,0,0,0,0}[[Mod[#,12]]]&,Prime[Range[nmax]]];A362243list[100] (* Paolo Xausa, Aug 28 2023 *)
  • Sage
    def a(n):
        if n == 1:
            return 5
        if n == 2:
            return 8
        p = Primes()[n-1]
        r = [1, 5, 7, 11]
        C = [6, 2, 4, 0]
        return 2*p + C[r.index(p%12)]

Formula

a(1) = 5, a(2) = 8, and for n > 2, a(n) = 2*prime(n) + C, where C is 6, 2, 4, 0 if prime(n) is 1, 5, 7, 11 mod 12 respectively.