cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A362570 a(n) is the number of isogeny classes of elliptic curves over the finite field of order prime(n).

Original entry on oeis.org

5, 7, 9, 11, 13, 15, 17, 17, 19, 21, 23, 25, 25, 27, 27, 29, 31, 31, 33, 33, 35, 35, 37, 37, 39, 41, 41, 41, 41, 43, 45, 45, 47, 47, 49, 49, 51, 51, 51, 53, 53, 53, 55, 55, 57, 57, 59, 59, 61, 61, 61, 61, 63, 63, 65, 65, 65, 65, 67, 67, 67, 69, 71, 71, 71, 71, 73, 73, 75, 75, 75, 75, 77
Offset: 1

Views

Author

Robin Visser, Apr 25 2023

Keywords

Comments

Two elliptic curves over a finite field F_q are isogenous if and only if they have the same trace of Frobenius, or equivalently, have the same number of points over F_q.
Thus, by the Hasse bound, a(n) is the number of integers with absolute value bounded by 2*sqrt(prime(n)).

Examples

			For n = 1, the a(1) = 5 isogeny classes of elliptic curves are parametrized by the 5 possible values for the trace of Frobenius: -2, -1, 0, 1, 2.
For n = 2, the a(2) = 7 isogeny classes of elliptic curves are parametrized by the 7 possible values for the trace of Frobenius: -3, -2, -1, 0, 1, 2, 3.
		

Crossrefs

Programs

  • Magma
    [2*Floor(2*Sqrt(p)) + 1 : p in PrimesUpTo(500)];
    
  • Mathematica
    2Floor[2Sqrt[Prime[Range[100]]]]+1 (* Paolo Xausa, Oct 23 2023 *)
  • PARI
    a(n) = 2*sqrtint(4*prime(n)) + 1;

Formula

a(n) = 2*floor(2*sqrt(prime(n))) + 1.
a(n) = 2*A247485(n) - 1.

A363840 a(n) is the number of isomorphism classes of genus 2 hyperelliptic curves over the finite field of order prime(n).

Original entry on oeis.org

20, 69, 285, 749, 2813, 4589, 10149, 14119, 24907, 49675, 60613, 102749, 139613, 160951, 209947, 300667, 414357, 457813, 606151, 721011, 783511, 992477, 1150629, 1418037, 1834951, 2071011, 2196269, 2461749, 2602157, 2898789, 4113149, 4513613, 5161749, 5390839, 6638395, 6909013, 7764749
Offset: 1

Views

Author

Robin Visser, Jun 23 2023

Keywords

Comments

Any (smooth, projective, geometrically irreducible) curve of genus 2 can be given by a Weierstrass equation of the form: y^2 + h(x)y = f(x), where h(x) and f(x) are polynomials satisfying deg(h) <= 3 and deg(f) <= 6.

Examples

			For n = 1, the a(1) = 20 genus 2 curves over F_2 can be given by their Weierstrass models as: y^2 + y = x^5, y^2 + (x^2 + 1)y = x^5, y^2 + (x^3 + x^2 + 1)y = x^5, y^2 + (x^3 + x + 1)y = x^5, y^2 + (x^3 + x^2 + x + 1)y = x^5, y^2 + y = x^5 + x^4, y^2 + (x+1)y = x^5 + x^4, y^2 + (x^2 + x + 1)y = x^5 + x^4, y^2 + (x^3 + x^2 + 1)y = x^5 + x^4, y^2 + y = x^5 + x^4 + x^3, y^2 + (x^2 + x + 1)y = x^5 + x^4 + x^3, y^2 + xy = x^5 + x^4 + x, y^2 + (x^2)y = x^5 + x^4 + x, y^2 + (x^2 + x)y = x^5 + x^4 + x, y^2 + y = x^5 + x^4 + 1, y^2 + (x^2 + x + 1)y = x^5 + x^4 + 1, y^2 + (x^3 + x^2 + 1)y = x^5 + x^4 + 1, y^2 + y = x^5 + x^3 + 1, y^2 + (x^3 + x^2 + 1)y = x^5 + x^3 + 1, and y^2 + (x^3 + x^2 + 1)y = x^6 + x^5 + 1.
		

Crossrefs

Programs

  • Sage
    def a(n):
        if n == 1: return 20
        p = Primes()[n-1]
        ans = 2*p^3 + p^2 + 2*p - 2
        if p%3 == 1: ans += 2
        if p%5 == 1: ans += 8
        if p == 5: ans += 2
        if p%8 in [1,3]: ans += 2
        return ans

Formula

a(1) = 20, and for n > 1, a(n) = 2*prime(n)^3 + prime(n)^2 + 2*prime(n) - 2 + 2*[prime(n) == 1 (mod 3)] + 8*[prime(n) == 1 (mod 5)] + 2*[prime(n) == 5] + 2*[prime(n) == 1 or 3 (mod 8)].

A363843 a(n) is the number of isomorphism classes of genus 3 hyperelliptic curves over the finite field of order prime(n).

Original entry on oeis.org

76, 526, 6508, 34228, 324562, 747004, 2849576, 4965266, 12896050, 41071144, 57316082, 138789292, 231850328, 294172382, 458893426, 836688844, 1430252626, 1689646684, 2700843026, 3609164734, 4146921368, 6155086706, 7879211410, 11169529016, 17176506056, 21022261804, 23187646130
Offset: 1

Views

Author

Robin Visser, Jun 23 2023

Keywords

Examples

			For n = 1, E. Nart and D. Sadornil showed that there are 76 genus 3 hyperelliptic curves over F_2, so a(1) = 76.
		

Crossrefs

Programs

  • Sage
    def a(n):
        if n == 1: return 76
        p = Primes()[n-1]
        ans = 2*p^5 + 2*p^3 - 2
        if p%4 == 3: ans -= 2*(p^2 - p)
        if p > 3: ans += 2*(p - 1)
        if p%8 == 1: ans += 4
        if p%7 == 1: ans += 12
        if p == 7: ans += 2
        if p%12 in [1, 5]: ans += 2
        return ans

Formula

a(1) = 76, and for n > 1, a(n) = 2*prime(n)^5 + 2*prime(n)^3 - 2 - 2*(prime(n)^2 - prime(n))*[prime(n) == 3 (mod 4)] + 2*(prime(n)-1)*[prime(n) > 3] + 4*[prime(n) == 1 (mod 8)] + 12*[prime(n) == 1 (mod 7)] + 2*[prime(n) == 7] + 2*[prime(n) == 1 or 5 (mod 12)].

A369902 Number of isomorphism classes of elliptic curves over the finite field of order prime(n) whose trace of Frobenius is zero.

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 4, 4, 6, 6, 6, 2, 8, 4, 10, 6, 12, 6, 4, 14, 4, 10, 12, 12, 4, 14, 10, 12, 6, 8, 10, 20, 8, 12, 14, 14, 6, 4, 22, 14, 20, 10, 26, 4, 10, 18, 12, 14, 20, 10, 12, 30, 12, 28, 16, 26, 22, 22, 6, 20, 12, 18, 12, 38, 8, 10, 12, 8, 20, 14, 16, 38, 18, 10, 12, 34, 22, 6, 20, 16
Offset: 1

Views

Author

Robin Visser, Feb 05 2024

Keywords

Comments

a(n) is the number of isomorphism classes of elliptic curves E over the finite field F_p such that E has exactly p+1 points over F_p.

Examples

			For n = 1, the unique a(1) = 1 elliptic curve over F_2 whose trace of Frobenius is zero is y^2 + y = x^3.
For n = 2, the a(2) = 2 elliptic curves over F_3 whose trace of Frobenius is zero are y^2 = x^3 + x and y^2 = x^3 + 2*x.
For n = 3, the a(3) = 2 elliptic curves over F_5 whose trace of Frobenius is zero are y^2 = x^3 + 1 and y^2 = x^3 + 2.
		

Crossrefs

Programs

  • PARI
    a(n) = if (n<=2, n, qfbhclassno(4*prime(n)));
    
  • Sage
    # A brute force computation of a(n)
    def a(n):
        if n==1: return 1
        p, ECs = Primes()[n-1], []
        for A,B in ((x, y) for x in range(p) for y in range(p)):
            if ((4*A^3 + 27*B^2)%p != 0):
                E = EllipticCurve(GF(p), [A,B])
                if (E.trace_of_frobenius()==0):
                    if not any([E.is_isomorphic(Ei) for Ei in ECs]): ECs.append(E)
        return len(ECs)

Formula

a(n) = A259825(4*prime(n))/12 if n > 2.
Showing 1-4 of 4 results.